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Theoretical Oscillation

𝑚𝑒

𝑑2𝑥

𝑑𝑡2
= −𝑞𝑒𝐸𝑥

From the Newton law:

𝑑2𝑥

𝑑𝑡2
+
𝑞𝑒
𝑚𝑒

𝐸𝑥 = 0

Where:

• x is the electron position in the horizontal plane;
• 𝑚𝑒 is the electron mass;
• 𝑞𝑒 is the electron charge;
• 𝐸𝑥 is the horizontal electric field due to the bunch passage which acts on the 

electron:

(1)
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Theoretical Oscillation
Electric Field of a Two-Dimensional Gaussian Charge

Bassetti-Erskine:

𝐸𝑥 𝑥, 𝑦 =
𝜆𝑧

2𝜀0 2𝜋 𝜎𝑥
2 − 𝜎𝑦

2

Im 𝑊
𝑥 + 𝑖𝑦

2 𝜎𝑥
2 − 𝜎𝑦

2

− 𝑒
−

𝑥2

2𝜎𝑥
2+

𝑦2

2𝜎𝑦
2
𝑊

𝑥
𝜎𝑦
𝜎𝑥

+ 𝑖𝑦
𝜎𝑥
𝜎𝑦

2 𝜎𝑥
2 − 𝜎𝑦

2

Where:
• y is the electron position in the vertical plane;
• 𝜀0 is the vacuum permittivity;
• 𝜎𝑥 and 𝜎𝑦 are the transverse dimension of the bunch (RMS), horizontal and vertical, 

respectively (𝜎𝑥 > 𝜎𝑦);

• 𝜆𝑧 is the linear longitudinal charge density of the proton bunch;
• 𝑊 𝜁 is the complex error function:

𝑊 𝜁 = 𝑒−𝜁
2
1 +

2𝑖

𝜋
න
0

𝜁

𝑒−𝜁
′2
𝑑𝜁′
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Theoretical Oscillation
Electric Field of a Two-Dimensional Gaussian Charge

Complex Error Function:

Expanding in series:

𝑊 𝜁 = 

𝑛=0

∞
𝑗𝜁 𝑛

Γ
𝑛
2 + 1

Where the Gamma function is defined:

Γ 𝑛 = 0
∞
𝑡𝑛−1𝑒−𝑡 𝑑𝑡

Stopping at the first order:

Γ
3

2
=
1

2
𝜋
1
2

𝑊 𝜁 ≈ 1 + 𝑗
2

𝜋
𝜁
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Theoretical Oscillation
Electric Field of a Two-Dimensional Gaussian Charge

ቚ𝐸𝑥 𝑥
𝑦=0

=
𝜆𝑧

2𝜀0 2𝜋 𝜎𝑥
2 − 𝜎𝑦

2

Im 𝑊
𝑥

2 𝜎𝑥
2 − 𝜎𝑦

2

− 𝑒
−

𝑥2

2𝜎𝑥
2𝑊

𝑥
𝜎𝑦
𝜎𝑥

2 𝜎𝑥
2 − 𝜎𝑦

2

Expanding in series and stopping at the first order:

ቚ𝐸𝑥 𝑥
𝑦=0

≈
𝜆𝑧

2𝜀0 2𝜋 𝜎𝑥
2 − 𝜎𝑦

2

Im 1 +
2𝑗

𝜋

𝑥

2 𝜎𝑥
2 − 𝜎𝑦

2

− 1 −
2𝑗

𝜋

𝑥
𝜎𝑦
𝜎𝑥

2 𝜎𝑥
2 − 𝜎𝑦

2

ቚ𝐸𝑥 𝑥
𝑦=0

≈
𝜆𝑧

2𝜀0 2𝜋 𝜎𝑥
2 − 𝜎𝑦

2

2

𝜋

1 − ൗ
𝜎𝑦

𝜎𝑥

2 𝜎𝑥
2 − 𝜎𝑦

2

𝑥

𝐸𝑥 𝑥 =
𝜆𝑧

2𝜋𝜀0𝜎𝑥 𝜎𝑥 + 𝜎𝑦
𝑥

The electric field is linear in the area near the centre of the bunch.

(2)
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Theoretical Oscillation
Substituting (2) in (1):

𝑑2𝑥

𝑑𝑡2
+
𝑞𝑒
𝑚𝑒

𝜆𝑧

2𝜋𝜀0𝜎𝑥 𝜎𝑥 + 𝜎𝑦
𝑥 = 0

The linear longitudinal charge density of the proton bunch:

𝜔𝑥 =
𝑞𝑒𝜆𝑧

2𝜋𝜀0𝑚𝑒𝜎𝑥 𝜎𝑥 + 𝜎𝑦
(3)

ሷ𝑥 + 𝜔𝑥
2𝑥 = 0

• Uniform distribution:

Nb is the number of proton in the bunch 

L is the length of the bunch (4𝜎𝑧)
• Gaussian distribution:

𝜆𝑧 =
𝑞𝑒𝑁𝑏
𝐿

(4)

𝜆𝑧(𝑧) =
𝑞𝑒𝑁𝑏

2𝜋𝜎𝑧
𝑒
−

𝑧2

2𝜎𝑧
2 (5)
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Theoretical Oscillation

Where:

• 𝜔𝑥 is the angular frequency of electron oscillation in the horizontal plane;
• 𝑥0 is the electron position at bunch head;
• 𝑣𝑥0 is the electron velocity at bunch head.

ሷ𝑥 + 𝜔𝑥
2𝑥 = 0

Equation of the Electron Transverse Motion: Harmonic Oscillator
Symmetry between Horizontal and Vertical plane

(6)

ቊ
𝑥 0 = 𝑥0
ሶ𝑥 0 = 𝑣𝑥0

(7.1)

(7.2)
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Theoretical Oscillation

Where:

• 𝐴𝑥 is the amplitude of electron oscillation in the horizontal plane;
• 𝑡 is the arrival time of the proton slice;
• 𝜑𝑥 is the phase of electron oscillation in the horizontal plane.

𝑥 𝑡 = 𝐴𝑥 cos 𝜔𝑥𝑡 + 𝜑𝑥

Solution of the harmonic oscillator:

(8)
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Theoretical Oscillation

𝑥 𝑡 = 𝐴𝑥 cos 𝜔𝑥𝑡 + 𝜑𝑥

Solution of the harmonic oscillator:

Oscillation Amplitude

Oscillation Angular Frequency

Oscillation Phase

22nd February 2019 Analysis Electron Motion Within the Beam
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Theoretical Oscillation: Frequency

𝑥 𝑡 = 𝐴𝑥 cos 𝜔𝑥𝑡 + 𝜑𝑥

Solution of the harmonic oscillator:

Oscillation Angular Frequency

22nd February 2019 Analysis Electron Motion Within the Beam

𝜔𝑥 =
𝑞𝑒𝜆𝑧

2𝜋𝜀0𝑚𝑒𝜎𝑥 𝜎𝑥 + 𝜎𝑦
(3)

(8)
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Theoretical Oscillation

𝑥 𝑡 = 𝐴𝑥 cos 𝜔𝑥𝑡 + 𝜑𝑥

Solution of the harmonic oscillator:

Oscillation Amplitude

22nd February 2019 Analysis Electron Motion Within the Beam
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Oscillation Phase
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Theoretical Oscillation: Amplitude - Phase

𝑥 𝑧 = 𝐴𝑥 cos
𝜔𝑥

𝑐
𝑧 − 𝑧0 + 𝜑𝑥

Solution of the harmonic oscillator (ultra-relativistic regime t = z/c):

(9)

Oscillation Amplitude Oscillation PhaseTraslation in z axis:

z0 = 2𝜎z

(9.1)

(9.2)
ቊ
𝑥 𝑧0 = 𝑥0
ሶ𝑥 𝑧0 = 𝑣𝑥0

Where:

• 𝑥0 is the electron position at bunch head;
• 𝑣𝑥0 is the electron velocity at bunch head.
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Theoretical Oscillation: Amplitude - Phase

𝑥 𝑧 = 𝐴𝑥 cos
𝜔𝑥

𝑐
𝑧 − 𝑧0 + 𝜑𝑥

Solution of the harmonic oscillator (ultra-relativistic regime t = z/c):

(9)

Oscillation Amplitude Oscillation PhaseTraslation in z axis:

z0 = 2𝜎z

(10)

(11)

𝑥 𝑧0 = 𝐴𝑥 cos 𝜑𝑥 = 𝑥0

ሶ𝑥 𝑧0 =
𝑑𝑥

𝑑𝑡
𝑧0

=
𝑑𝑥

𝑑𝑧

𝑑𝑧

𝑑𝑡
𝑧0

= −𝐴𝑥
𝜔𝑥

𝑐
sin 𝜑𝑥 𝑐 = 𝑣𝑥0
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Theoretical Oscillation: Amplitude - Phase

(10)

(11)൞
𝐴𝑥 cos 𝜑𝑥 = 𝑥0

𝐴𝑥 sin 𝜑𝑥 = −
𝑣𝑥0
𝜔𝑥

(10)2 + (11)2
𝐴𝑥

2 = 𝑥0
2 +

𝑣𝑥0
𝜔𝑥

2

𝜑𝑥 = −𝑎𝑟𝑐𝑡𝑎𝑛𝐼𝑉
ൗ

𝑣𝑥0
𝜔𝑥

𝑥0
(11) / (10)

(12)

(13)
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Theoretical Oscillation: Amplitude - Phase

𝑥 𝑧 = 𝐴𝑥 cos
𝜔𝑥

𝑐
𝑧 − 𝑧0 + 𝜑𝑥

Solution of the harmonic oscillator (ultra-relativistic regime t = z/c):

(9)

Oscillation Amplitude: Oscillation Phase:Traslation in z axis:

z0 = 2𝜎z
𝐴𝑥

2 = 𝑥0
2 +

𝑣𝑥0
𝜔𝑥

2

(12)

Oscillation Angular Frequency:

(3)

𝜑𝑥 = −𝑎𝑟𝑐𝑡𝑎𝑛𝐼𝑉
ൗ

𝑣𝑥0
𝜔𝑥

𝑥0
(13)

𝜔𝑥 =
𝑞𝑒𝜆𝑧

2𝜋𝜀0𝑚𝑒𝜎𝑥 𝜎𝑥 + 𝜎𝑦
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Theoretical Oscillation:
Linear Region

𝐸𝑟 =
𝑁𝑏𝑞𝑒
2𝜋𝜀0𝐿

1

𝑟𝑁𝜎𝑥
1 − 𝑒−

𝑟𝑁
2

2(14)

(15)

(16)

𝑑𝐸𝑟
𝑑𝑟

= 0

𝑓 𝑟𝑁 = 𝑟𝑁
2
𝑒−

𝑟𝑁
2

2 + 𝑒−
𝑟𝑁

2

2 − 1 = 0

𝑟𝑁 =
𝑟

𝜎𝑥

𝑑𝐸𝑟
𝑑𝑟

=
𝑁𝑏𝑞𝑒

2𝜋𝜀0𝐿𝑟𝑁
2𝜎𝑥

2 𝑟𝑁
2𝑒−

𝑟𝑁
2

2 + 𝑒−
𝑟𝑁

2

2 − 1

from (16) 𝑟𝑁 << 1.59
linear region of the electric field

Normalized

radius

𝐿 = 4𝜎𝑧

𝜎𝑥 = 𝜎𝑦 = 448 μm

𝜎𝑧 = 89.9 mm

𝑁𝑏 = 1.2e11

19

(1)

(2)

(3)
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Theoretical Oscillation: 

Linear Region

20

(1)

(2)

(3)

In our case:

• from (16) 𝑟𝑁 << 1.59 𝜎𝑥 = 𝜎𝑦 = 448 μm

• 𝑟 << 𝑟𝑁 ∗ 𝜎 = 0.712 mm



22nd February 2019 Analysis Electron Motion Within the Beam

Firstly, we generate the electrons or we use a 

build-up simulation (no control on the velocity)

Secondly, we can choose the electron:

𝐴𝑥 = 𝑥0
2 +

𝑣𝑥0
𝜔𝑥

2

≈ 𝐴𝑥goal

𝐴𝑦 = 𝑦0
2 +

𝑣𝑦0

𝜔𝑥

2

≈ 𝐴𝑦goal

𝑟𝑚𝑎𝑥 = 𝐴𝑥goal
2 + 𝐴𝑦goal

2

(𝑟𝑚𝑎𝑥: when the electron is oscillating in phase in 

the planes)

𝑟𝑚𝑎𝑥 has to be inside the linear region

• Uniform longitudinal profile:

research at bunch start (2𝜎z)

• Gaussian longitudinal profile:

research at bucket start (zcut)

Theoretical Oscillation: 

Linear Region

21

(1)

(2)

(3)
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The minimization of the mean squared error is the 

criteria in order to choose the electron:

𝑒− = argmin𝑖 𝑑𝑖

𝑑𝑖 = 𝐴𝑥𝑖 − 𝐴𝑥goal
2
+ 𝐴𝑦𝑖 − 𝐴ygoal

2

Theoretical Oscillation: 

Linear Region

22

(1)

(2)

(3)
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The kinetic energy of the system is:

The potential energy of the system is:

The total energy of the system is:

(it does not depend on time: invariant)

Theoretical Oscillation: Invariant

𝐾 𝑡 =
1

2
𝑚𝑒𝑣𝑥

2 𝑡 =
1

2
𝑚𝑒 𝐴𝑥

2𝜔𝑥
2sin2 𝜔𝑥𝑡 + 𝜑𝑥

𝑥 𝑡 = 𝐴𝑥 cos 𝜔𝑥𝑡 + 𝜑𝑥 (8)

(18)

𝑣𝑥 𝑡 = −𝐴𝑥𝜔𝑥 sin 𝜔𝑥𝑡 + 𝜑𝑥 (17)

U 𝑡 =
1

2
𝑚𝑒𝜔𝑥

2𝑥2 𝑡 =
1

2
𝑚𝑒 𝐴𝑥

2𝜔𝑥
2cos2 𝜔𝑥𝑡 + 𝜑𝑥 (19)

(20)𝐸 = 𝐾 𝑡 + U 𝑡 =
1

2
𝑚𝑒𝐴𝑥

2𝜔𝑥
2 =

1

2
𝑚𝑒𝜔𝑥

2 𝑥0
2 +

𝑣𝑥0
2

𝜔𝑥
2
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Simulation Parameters
• Bunch Intensity: 1.2e11 protons per bunch

• Bunch length: 1.20 ns

• 𝜀𝑛𝑥 = 𝜀𝑛𝑦 = 2.5 𝜇𝑚

• Energy: 7 TeV

• Electron density: 1e12 e-/m3 (drift, dipole), build-up (quad)

• SEY: 1.30

• 𝛽𝑥 = 𝛽𝑦= 600 m
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Numerical Parameters
• Slices = 500

• MPs/slice = 5,000

• Segments = 16

• Max Electron MPs = 900,000
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Uniform Longitudinal Profile

−𝑧𝑐𝑢𝑡 −2𝜎𝑧

𝐿 = 4𝜎𝑧

500 slices

MPs

𝐿
𝑧 <

𝐿

2

0 𝑧 >
𝐿

2

𝜎𝑧 = 89.9 mm

𝑧𝑐𝑢𝑡 = 375 mm

2𝜎𝑧 𝑧𝑐𝑢𝑡
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𝑓𝑥 = 𝑓𝑦 =
1

2𝜋
𝜔𝑥 = 𝟑. 𝟐𝟔 𝑮𝑯𝒛

Where:

• 𝑁𝑏 = 1.2e11;

• 𝜎𝑧 = 89.9 mm;

• L = 360 mm;

• 𝜎𝑥 = 𝜎𝑦 = 448 μm.

Theoretical Oscillation: Frequency
In the case study: uniform distribution and round bunch

𝜔𝑥 =
𝑞𝑒𝜆𝑧

2𝜋𝜀0𝑚𝑒𝜎𝑥 𝜎𝑥 + 𝜎𝑦
(3) 𝜆𝑧 =

𝑞𝑒𝑁𝑏
𝐿

Uniform Longitudinal Profile

(4)
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Uniform Longitudinal Profile: Drift Space

• Good agreement between simulation and theoretical prediction

𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.1 mm at bunch start
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Uniform Longitudinal Profile: Dipole

• Good agreement between simulation and theoretical prediction

• In horizontal plane, the electrons cannot move due to the presence of the 

dipolar magnetic field

𝐴𝑥goal = 0.0 mm 𝐴ygoal = 0.1 mm at bunch start

Analysis Electron Motion Within the Beam22nd February 2019
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Uniform Longitudinal Profile: Quadrupole

• Good agreement between simulation and theoretical prediction

𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.0 mm at bunch start

Analysis Electron Motion Within the Beam22nd February 2019
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Uniform Longitudinal Profile: Quadrupole

• Good agreement between simulation and theoretical prediction

𝐴𝑥goal = 0.0 mm 𝐴ygoal = 0.1 mm at bunch start

Analysis Electron Motion Within the Beam22nd February 2019
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Uniform Longitudinal Profile: Quadrupole

• The equations work well also when the electron oscillates in both the planes

𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.1 mm at bunch start

Analysis Electron Motion Within the Beam22nd February 2019
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Gaussian Longitudinal Profile

MPs

2𝜋𝜎𝑧
𝑒
−

𝑧2

2𝜎𝑧
2

𝜎𝑧 = 89.9 mm

𝑧𝑐𝑢𝑡 = 375 mm

−𝑧𝑐𝑢𝑡 −2𝜎𝑧

𝐿 = 4𝜎𝑧

500 slices

2𝜎𝑧 𝑧𝑐𝑢𝑡
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• Using the equations of the case of uniform longitudinal profile

Gaussian Longitudinal Profile: Drift Space
𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.1 mm at bunch start

Analysis Electron Motion Within the Beam22nd February 2019
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𝐴𝑥
2 = 𝑥0

2 +
𝑣𝑥0
𝜔𝑥

2

(12)

Gaussian Longitudinal Profile: Drift Space

• The frequency increases in the centre of the proton bunch (more protons):

• The amplitude decreases in the centre of the proton bunch (more 

protons):

𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.1 mm at bunch start

(4)𝜆𝑧 =
𝑞𝑒𝑁𝑏
𝐿

(3)𝜔𝑥 =
𝑞𝑒𝜆𝑧

2𝜋𝜀0𝑚𝑒𝜎𝑥 𝜎𝑥 + 𝜎𝑦

Analysis Electron Motion Within the Beam22nd February 2019
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𝑓𝑥(𝑧) = 2𝜋
𝑞𝑒𝜆𝑧(𝑧)

2𝜋𝜀0𝑚𝑒𝜎𝑥 𝜎𝑥 + 𝜎𝑦

(5)

(3)

Gaussian Longitudinal Profile

𝜆𝑧(𝑧) =
𝑞𝑒𝑁𝑏

2𝜋𝜎𝑧
𝑒
−

𝑧2

2𝜎𝑧
2

• The local frequency increases in 

the centre of the proton bunch
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Gaussian Longitudinal Profile

ሷ𝑥 + 𝜔𝑥
2(𝑡)𝑥 = 0

In the case of Gaussian longitudinal profile the frequency depends on the time:

Therefore, (8) is only a local approximated solution (not a global solution) of 

our problem.

We can use an iterative method

(6)

𝑥 𝑡 = 𝐴𝑥 cos 𝜔𝑥(𝑡)𝑡 + 𝜑𝑥 (8)

Analysis Electron Motion Within the Beam22nd February 2019
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Gaussian Longitudinal Profile
Step 0

𝑥 𝑧0 = 𝑥0 (9.1)

The initial position of the electron is given by the initial conditions

Analysis Electron Motion Within the Beam22nd February 2019
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Gaussian Longitudinal Profile
Step 1

𝑥 𝑧 = 𝐴𝑥0 cos
𝜔𝑥(𝑧0)

𝑐
𝑧 − 𝑧0 + 𝜑𝑥0

The local solution at z0 is given by (21).

In order to simplify the mathematical notation:

(21)

𝐴𝑥0 = 𝐴𝑥(𝑧0) = 𝑥0
2 +

𝑣𝑥0
𝜔𝑥(𝑧0)

2

(12)

𝜑𝑥0 = 𝜑𝑥(𝑧0) = −𝑎𝑟𝑐𝑡𝑎𝑛𝐼𝑉
ൗ

𝑣𝑥0
𝜔𝑥(𝑧0)

𝑥0
(13)

𝑥k = 𝑥 𝑧𝑘
𝜔𝑥𝑘 = 𝜔𝑥 𝑧𝑘
𝐴𝑥𝑘 = 𝐴𝑥(𝑧𝑘)
𝜑𝑥𝑘 = 𝜑𝑥(𝑧𝑘)
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Gaussian Longitudinal Profile
Step 1

𝑥1 = 𝐴𝑥0 cos
𝜔𝑥0

𝑐
𝑧1 − 𝑧0 + 𝜑𝑥0

The electron position at z1 is given by (22).

The initial conditions of the next step are:

(22)

ቐ

𝑥1

𝑣𝑥1 = −𝐴𝑥0𝜔𝑥0 sin
𝜔𝑥0

𝑐
∆𝑧 + 𝜑𝑥0

Uniform sampling:

∆𝑧1 = 𝑧1 − 𝑧0

𝑥1 = 𝐴𝑥0 cos
𝜔𝑥0

𝑐
∆𝑧 + 𝜑𝑥0

∆𝑧𝑘 = ∆𝑧
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Gaussian Longitudinal Profile
Step 2

𝑥 𝑧 = 𝐴𝑥1 cos
𝜔𝑥1

𝑐
𝑧 − 𝑧1 + 𝜑𝑥1

The solution at z1 is given by (23)

(23)

𝐴𝑥1 = 𝑥1
2 +

𝑣𝑥1
𝜔𝑥1

2

(12)

𝜑𝑥1 = −𝑎𝑟𝑐𝑡𝑎𝑛𝐼𝑉
ൗ

𝑣𝑥1
𝜔𝑥1

𝑥1
(13)
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Gaussian Longitudinal Profile
Step 2

The electron position at z2 is given by (24).

The initial conditions of the next step are:

(24)

ቐ

𝑥2

𝑣𝑥2 = −𝐴𝑥1𝜔𝑥1 sin
𝜔𝑥1

𝑐
∆𝑧 + 𝜑𝑥1

𝑥2 = 𝐴𝑥1 cos
𝜔𝑥1

𝑐
∆𝑧 + 𝜑𝑥1

And so on…
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(25)

(26)

(27)

(28)

49

Gaussian Longitudinal Profile
Step k

𝐴𝑥𝑘 = 𝑥𝑘
2 +

𝑣𝑥k
𝜔𝑥𝑘

2

𝜑𝑥𝑘 = −𝑎𝑟𝑐𝑡𝑎𝑛𝐼𝑉
ൗ

𝑣𝑥k
𝜔𝑥𝑘

𝑥k

Analysis Electron Motion Within the Beam22nd February 2019

𝑥k+1 = 𝐴𝑥𝑘 cos
𝜔𝑥𝑘

𝑐
∆𝑧 + 𝜑𝑥𝑘

𝑣𝑥𝑘+1 = −𝐴𝑥𝑘𝜔𝑥𝑘 sin
𝜔𝑥𝑘

𝑐
∆𝑧 + 𝜑𝑥𝑘
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Gaussian Longitudinal Profile: Drift Space
𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.0 mm at bucket start

Analysis Electron Motion Within the Beam22nd February 2019

• Good agreement between simulation and theoretical prediction
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Gaussian Longitudinal Profile: Drift Space
𝐴𝑥goal = 0.0 mm 𝐴ygoal = 0.1 mm at bucket start

Analysis Electron Motion Within the Beam22nd February 2019

• Good agreement between simulation and theoretical prediction
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Gaussian Longitudinal Profile: Drift Space
𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.1 mm at bucket start

Analysis Electron Motion Within the Beam22nd February 2019

• The equations work well also when the electron oscillates in both the planes
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Gaussian Longitudinal Profile: Dipole

• Good agreement between simulation and theoretical prediction

• In horizontal plane, the electrons cannot move due to the presence of the 

dipolar magnetic field

𝐴𝑥goal = 0.0 mm 𝐴ygoal = 0.1 mm at bucket start
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𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.0 mm at bucket start

Gaussian Longitudinal Profile: Quadrupole

• The magnetic field force on the electrons is not negligible compared to the 

electric field outside the range ±2𝜎z

• Good agreement between simulation and theoretical prediction inside the 

range ±2𝜎z

Analysis Electron Motion Within the Beam22nd February 2019
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𝐴𝑥goal = 0.0 mm 𝐴ygoal = 0.1 mm at bucket start

Gaussian Longitudinal Profile: Quadrupole

Analysis Electron Motion Within the Beam22nd February 2019

• Good agreement between simulation and theoretical prediction inside the 

range ±2𝜎z
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𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.1 mm at bucket start

Gaussian Longitudinal Profile: Quadrupole

Analysis Electron Motion Within the Beam22nd February 2019

• Good agreement between simulation and theoretical prediction inside the 

range ±2𝜎z

• The equations work well also when the electron oscillates in both the planes
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Conclusions
 No bugs in the code: we find the frequency we expect

(when 𝜆𝑧 is uniform);

 When 𝜆𝑧 is Gaussian we can compute local frequencies

(for estimating ∆z);

 This is also valid in the presence of a magnetic field

 Study the oscillation of all electrons

60

Future Developments
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Thanks for your attention
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Extended Presentation

• /eos/user/l/lusabato/e_cloud_studies/milesto

nes/2019-02-13_electron_oscillation_8.pptx
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Appendix: Amplitude - Phase

𝐴𝑥
2 = 𝑥0

2 +
𝑣𝑥0
𝜔𝑥

2

𝜑𝑥 = −𝑎𝑟𝑐𝑡𝑎𝑛𝐼𝑉
ൗ

𝑣𝑥0
𝜔𝑥

𝑥0
=

−𝑎𝑟𝑐𝑡𝑎𝑛
ൗ

𝑣𝑥0
𝜔𝑥

𝑥0
𝑥0 > 0

±𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛
ൗ

𝑣𝑥0
𝜔𝑥

𝑥0
𝑥0 < 0

(12)

(13)

𝝋𝒙
𝒙𝟎

− ൗ
𝒗𝒙𝟎

𝝎𝒙

൞
𝐴𝑥 cos 𝜑𝑥 = 𝑥0

𝐴𝑥 sin 𝜑𝑥 = −
𝑣𝑥0
𝜔𝑥

(10)

(11)
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An Ordinary Differential Equation (ODE) of the second order can be written as a 

system of two ODE of the first order:

Appendix: Invariant (2.1)

ሷ𝑥 + 𝜔𝑥
2𝑥 = 0 (6)

𝑑𝑥

𝑑𝑡
= 𝑣𝑥

𝑑𝑣𝑥
𝑑𝑡

= −𝜔𝑥
2𝑥

(6.1)

(6.2)

𝛂*(6.1) + 𝛃*(6.2): 𝛼
𝑑𝑥

𝑑𝑡
+ 𝛽

𝑑𝑣𝑥
𝑑𝑡

= 𝛼𝑣𝑥 − 𝛽𝜔𝑥
2𝑥

𝑑

𝑑𝑡
𝛼𝑥 + 𝛽𝑣𝑥 = 𝛼𝑣𝑥 − 𝛽𝜔𝑥

2𝑥

In order to have this quantity 𝛼𝑥 + 𝛽𝑣𝑥 constant with the time:

𝛼𝑣𝑥 − 𝛽𝜔𝑥
2𝑥 = 0 𝛽 = 𝛼

𝑣𝑥
𝜔𝑥

2𝑥

𝛼𝑥 + 𝛽𝑣𝑥 =
𝛼

𝑥
𝑥2 +

𝑣𝑥
2

𝜔𝑥
2

Substituting (14) in the invariant:

(21)

(22)
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In order to have the same invariant (13), we can choose 𝛂:

𝛼 =
1

2
𝑚𝑒𝜔𝑥

2𝑥 (23) 𝛽 =
1

2
𝑚𝑒𝑣𝑥

(24)

𝛼𝑥 + 𝛽𝑣𝑥 =
1

2
𝑚𝑒𝜔𝑥

2 𝑥2 +
𝑣𝑥

2

𝜔𝑥
2

(25)

22nd February 2019 Analysis Electron Motion Within the Beam

Appendix: Invariant (2.2)



𝐴𝑥
2 = 𝑥0

2 +
𝑣𝑥0
𝜔𝑥

2

67

𝑥 𝑧 = 𝐴𝑥 cos
𝜔𝑥

𝑐
𝑧 − 𝑧0 + 𝜑𝑥 (9)

Oscillation Amplitude: Oscillation phase:Traslation in z axis:
z0 = 2𝜎z(12)

𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.1 mm at bunch start

Oscillation Angular Frequency:

(3)

𝜑𝑥 = −𝑎𝑟𝑐𝑡𝑎𝑛𝐼𝑉
ൗ

𝑣𝑥0
𝜔𝑥

𝑥0
(13)

𝜔𝑥 =
𝑞𝑒𝜆𝑧

2𝜋𝜀0𝑚𝑒𝜎𝑥 𝜎𝑥 + 𝜎𝑦
(4)𝜆𝑧 =

𝑞𝑒𝑁𝑏
𝐿

Gaussian Longitudinal Bunch Profile: Drift Space
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• Discrepancy between the theoretical predictions and the simulations

• The magnetic field force on the electrons might be non-negligible compared 

to the electric field:
1. considering only the part of the bunch where there are more protons (in the 

longitudinal centre, for example in the range ±2𝜎z)

2. coupling between the planes

𝐴𝑥goal = 0.1 mm 𝐴ygoal = 0.1 mm at bucket start

Gaussian Longitudinal Bunch Profile: Quadrupole
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