

22nd February 2019 E-Cloud Meeting 65

Analysis Electron Motion Within the Beam

L. Sabato, G. Iadarola

luca.sabato@cern.ch

22nd February 2019 **Analysis Electron Motion Within the Beam**

Outline

- **EXECUTE:** Theoretical Oscillation
- Uniform Longitudinal Profile
- Gaussian Longitudinal Profile
- **▶ Conclusions**

Outline

Theoretical Oscillation

- **Frequency**
- **Amplitude and Phase**
- **-** Linear Region
- **Invariant**
- Uniform Longitudinal Profile
- Gaussian Longitudinal Profile
- \triangleright Conclusions

From the Newton law:

$$
m_e \frac{d^2 x}{dt^2} = -q_e E_x
$$

$$
\frac{d^2 x}{dt^2} + \frac{q_e}{m_e} E_x = 0
$$
 (1)

Where:

- x is the electron position in the horizontal plane;
- m_e is the electron mass;
- q_e is the electron charge;
- \bullet E_x is the horizontal electric field due to the bunch passage which acts on the electron:

Electric Field of a Two-Dimensional Gaussian Charge Bassetti-Erskine:

$$
E_x(x,y) = \frac{\lambda_z}{2\varepsilon_0 \sqrt{2\pi(\sigma_x^2 - \sigma_y^2)}} \operatorname{Im} \left[W \left(\frac{x + iy}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right) - e^{-\left[\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2} \right]} W \left(\frac{x \frac{\sigma_y}{\sigma_x} + iy \frac{\sigma_x}{\sigma_y}}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right) \right]
$$

Where:

- *y* is the electron position in the vertical plane;
- ε_0 is the vacuum permittivity;
- σ_x and σ_y are the transverse dimension of the bunch (RMS), horizontal and vertical, respectively $(\sigma_x > \sigma_y);$
- λ_z is the linear longitudinal charge density of the proton bunch;
- $W(\zeta)$ is the complex error function:

$$
W(\zeta) = e^{-\zeta^2} \left[1 + \frac{2i}{\sqrt{\pi}} \int_0^{\zeta} e^{-\zeta'^2} d\zeta' \right]
$$

Electric Field of a Two-Dimensional Gaussian Charge Complex Error Function:

Expanding in series:

$$
W(\zeta) = \sum_{n=0}^{\infty} \frac{(j\zeta)^n}{\Gamma(\frac{n}{2} + 1)}
$$

Where the Gamma function is defined: $\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt$

Stopping at the first order: Γ 3 2 = 1 2 π 1 2

$$
W(\zeta) \approx 1 + j\frac{2}{\sqrt{\pi}}\zeta
$$

Theoretical Oscillation **Electric Field of a Two-Dimensional Gaussian Charge**

$$
E_x(x)\Big|_{y=0} = \frac{\lambda_z}{2\varepsilon_0 \sqrt{2\pi(\sigma_x^2 - \sigma_y^2)}} \operatorname{Im} \left[W \left(\frac{x}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right) - e^{-\frac{x^2}{2\sigma_x^2}} W \left(\frac{x\frac{\sigma_y}{\sigma_x}}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right) \right]
$$

Expanding in series and stopping at the first order:

$$
E_x(x)\Big|_{y=0} \approx \frac{\lambda_z}{2\varepsilon_0 \sqrt{2\pi(\sigma_x^2 - \sigma_y^2)}} \operatorname{Im} \left[1 + \frac{2j}{\sqrt{\pi}} \frac{x}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} - 1 - \frac{2j}{\sqrt{\pi}} \frac{x\frac{\sigma_y}{\sigma_x}}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}}\right]
$$

 \sim

$$
E_x(x)\Big|_{y=0} \approx \frac{\lambda_z}{2\varepsilon_0 \sqrt{2\pi (\sigma_x^2 - \sigma_y^2)}} \frac{2}{\sqrt{\pi}} \frac{1 - \frac{\sigma_y}{\sigma_x}}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} x
$$

$$
E_x(x) = \frac{\lambda_z}{2\pi\varepsilon_0 \sigma_x (\sigma_x + \sigma_y)} x \qquad (2)
$$

The electric field is linear in the area near the centre of the bunch.

 \mathbf{L}

Substituting (2) in (1):

$$
\frac{d^2x}{dt^2} + \frac{q_e}{m_e} \frac{\lambda_z}{2\pi\varepsilon_0 \sigma_x (\sigma_x + \sigma_y)} x = 0 \qquad \ddot{x} + \omega_x^2 x = 0
$$

$$
\omega_x = \sqrt{\frac{q_e \lambda_z}{2\pi\varepsilon_0 m_e \sigma_x (\sigma_x + \sigma_y)}}
$$
 (3)

The linear longitudinal charge density of the proton bunch:

• Uniform distribution:

$$
\lambda_z = \frac{q_e N_b}{L}
$$

(4) N_b is the number of proton in the bunch *L* is the length of the bunch $(4\sigma_z)$

• Gaussian distribution:

$$
\lambda_z(z) = \frac{q_e N_b}{\sqrt{2\pi}\sigma_z} e^{-\frac{z^2}{2\sigma_z^2}}
$$
 (5)

Equation of the Electron Transverse Motion: Harmonic Oscillator Symmetry between Horizontal and Vertical plane

 $\ddot{x} + \omega_x^2 x = 0$ **(6)** $\{ \}$ $x(0) = x_0$ $\dot{x}(0) = v_{x0}$ **(7.1) (7.2)**

Where:

- ω_{γ} is the angular frequency of electron oscillation in the horizontal plane;
- x_0 is the electron position at bunch head;
- $v_{\rm r0}$ is the electron velocity at bunch head.

Solution of the harmonic oscillator:

 $x(t) = A_x \cos(\omega_x t + \varphi_x)$ **(8)**

Where:

- A_x is the amplitude of electron oscillation in the horizontal plane;
- \cdot t is the arrival time of the proton slice;
- φ_x is the phase of electron oscillation in the horizontal plane.

22nd February 2019 **Analysis Electron Motion Within the Beam**

Theoretical Oscillation: Frequency

Solution of the harmonic oscillator:

$$
= A_x \cos \left(\frac{\omega_x t + \varphi_x}{2}\right)
$$
 (8)
Oscillation Angular Frequency

$$
\omega_x = \sqrt{\frac{q_e \lambda_z}{2\pi \varepsilon_0 m_e \sigma_x (\sigma_x + \sigma_y)}}
$$

 $x(t)$

(3)

Solution of the harmonic oscillator:

Solution of the harmonic oscillator (ultra-relativistic regime *t = z/c*):

Where:

- x_0 is the electron position at bunch head;
- v_{x0} is the electron velocity at bunch head.

Solution of the harmonic oscillator (ultra-relativistic regime *t = z/c*):

Solution of the harmonic oscillator (ultra-relativistic regime *t = z/c*):

 $x(z) = A_x \cos$ ω_x đ $Z-\left| Z_{0}\right| + \varphi_{X}$ **(9)** Oscillation Amplitude: **Traslation in** *z* **axis: Oscillation Phase:** $z_0 = 2\sigma_z$ $A_x^2 = x_0^2 +$ v_{x0} ω_x 2 **(12)** Oscillation Angular Frequency: $\omega_x = \frac{q_e \lambda_z}{2 \pi \epsilon_0 m_e (q_e + q_e)}$ (3) $\varphi_x = -arctan_{IV}$ v_{x0} ω_x \mathcal{X}_0 **(13)** $q_e \lambda_z$ $2\pi\varepsilon_{0} m_{e} \sigma_{x}(\sigma_{x}+\sigma_{y})$

Theoretical Oscillation: Linear Region

In our case:

- from (16) $|r_N| < 1.59$ $\sigma_x = \sigma_y = 448 \text{ }\mu\text{m}$
- $|r| << r_N * \sigma = 0.712$ mm

Theoretical Oscillation: Linear Region

Firstly, we generate the electrons or we use a build-up simulation (no control on the velocity) Secondly, we can choose the electron:

$$
\begin{cases}\nA_x = \sqrt{x_0^2 + \left(\frac{v_{x0}}{\omega_x}\right)^2} \approx A_{x \text{goal}} \\
A_y = \sqrt{y_0^2 + \left(\frac{v_{y0}}{\omega_x}\right)^2} \approx A_{y \text{goal}} \\
r_{max} = \sqrt{A_{x \text{goal}}^2 + A_{y \text{goal}}^2}\n\end{cases}
$$

 $(r_{max}:$ when the electron is oscillating in phase in the planes)

 r_{max} has to be inside the linear region

- Uniform longitudinal profile: research at bunch start (*2^z*)
- Gaussian longitudinal profile: research at bucket start (*zcut*)

Theoretical Oscillation: Linear Region

The minimization of the mean squared error is the criteria in order to choose the electron:

 e^- = argmin_i (d_i)

$$
d_i = \sqrt{\left(A_{xi} - A_{xgoal}\right)^2 + \left(A_{yi} - A_{ygoal}\right)^2}
$$

Theoretical Oscillation: Invariant $x(t) = A_x \cos(\omega_x t + \varphi_x)$ (8) $\implies v_x(t) = -A_x \omega_x \sin(\omega_x t + \varphi_x)$ (17)

The kinetic energy of the system is:

$$
K(t) = \frac{1}{2} m_e v_x^2(t) = \frac{1}{2} m_e A_x^2 \omega_x^2 \sin^2(\omega_x t + \varphi_x)
$$
 (18)

The potential energy of the system is:

$$
U(t) = \frac{1}{2} m_e \omega_x^2 x^2(t) = \frac{1}{2} m_e A_x^2 \omega_x^2 \cos^2(\omega_x t + \varphi_x)
$$
 (19)

The total energy of the system is:

$$
E = K(t) + U(t) = \frac{1}{2} m_e A_x^2 \omega_x^2 = \frac{1}{2} m_e \omega_x^2 \left(x_0^2 + \frac{v_{x0}^2}{\omega_x^2} \right)
$$
 (20)

(it does not depend on time: invariant)

Simulation Parameters

- Bunch Intensity: 1.2e11 protons per bunch
- Bunch length: 1.20 ns
- $\varepsilon_{nx} = \varepsilon_{ny} = 2.5 \ \mu m$
- Energy: 7 TeV
- Electron density: 1e12 e⁻/m³ (drift, dipole), build-up (quad)
- **SEY: 1.30**
- $\beta_x = \beta_y = 600$ m

Numerical Parameters

- \cdot Slices = 500
- MPs/slice $= 5,000$
- Segments = 16

• Max Electron MPs = 900,000

Outline

EXA: Theoretical Oscillation

Uniform Longitudinal Profile

- **Drift Space**
- **Dipole**
- **Arc Quadrupole**
- Gaussian Longitudinal Profile
- ▶ Conclusions

Uniform Longitudinal Profile

 $\sigma_{\rm z} = 89.9$ mm z_{cut} = 375 mm

Uniform Longitudinal Profile

Theoretical Oscillation: Frequency

In the case study: uniform distribution and round bunch

$$
\omega_x = \sqrt{\frac{q_e \lambda_z}{2\pi \varepsilon_0 m_e \sigma_x (\sigma_x + \sigma_y)}}
$$
\n(3)\n
$$
f_x = f_y = \frac{1}{2\pi} \omega_x = 3.26 \text{ GHz}
$$

Where:

- $N_b = 1.2e11;$
- $\sigma_z = 89.9$ mm;
- $L = 360$ mm;
- $\sigma_x = \sigma_v = 448 \text{ µm}.$

(4)

Outline

EXA: Theoretical Oscillation

Uniform Longitudinal Profile

- **Drift Space**
- **Dipole**
- **Arc Quadrupole**
- Gaussian Longitudinal Profile
- Comparisons

• Good agreement between simulation and theoretical prediction

Outline

EXA: Theoretical Oscillation

Uniform Longitudinal Profile

- **Drift Space**
- **Dipole**
- **Arc Quadrupole**
- Gaussian Longitudinal Profile
- ▶ Conclusions

- Good agreement between simulation and theoretical prediction
- In horizontal plane, the electrons cannot move due to the presence of the dipolar magnetic field

Outline

EXA: Theoretical Oscillation

Uniform Longitudinal Profile

- **-** Drift Space
- **Dipole**
- **Arc Quadrupole**
- Gaussian Longitudinal Profile
- **▶ Conclusions**

• Good agreement between simulation and theoretical prediction

• Good agreement between simulation and theoretical prediction

The equations work well also when the electron oscillates in both the planes

Outline

EXA: Theoretical Oscillation

Uniform Longitudinal Profile

Gaussian Longitudinal Profile

- **Drift Space**
- **Dipole**
- **Arc Quadrupole**
- **▶ Conclusions**

 $\sigma_z = 89.9$ mm z_{cut} = 375 mm

Outline

EXA: Theoretical Oscillation

Uniform Longitudinal Profile

Gaussian Longitudinal Profile

- **Drift Space**
- **Dipole**
- **Arc Quadrupole**
- **▶ Conclusions**

Using the equations of the case of uniform longitudinal profile

The frequency increases in the centre of the proton bunch (more protons):

$$
\omega_x = \sqrt{\frac{q_e \lambda_z}{2\pi \varepsilon_0 m_e \sigma_x (\sigma_x + \sigma_y)}} \quad \textbf{(3)} \qquad \lambda_z = \frac{q_e N_b}{L} \quad \textbf{(4)}
$$

 $\sqrt{2}$ **(12)** The amplitude decreases in the centre of the proton bunch (more protons):

$$
A_x^2 = x_0^2 + \left(\frac{v_{x0}}{\omega_x}\right)^2 \qquad (1)
$$

In the case of Gaussian longitudinal profile the frequency depends on the time:

$$
\ddot{x} + \omega_x^2(t)x = 0 \qquad (6)
$$

$$
x(t) = A_x \cos(\omega_x(t)t + \varphi_x)
$$
 (8)

Therefore, (8) is only a local approximated solution (not a global solution) of our problem.

We can use an iterative method

 $x(z_0) = x_0$ (9.1)

The initial position of the electron is given by the initial conditions

22nd February 2019 **Analysis Electron Motion Within the Beam**

The local solution at z_0 is given by (21).

In order to simplify the mathematical notation:

$$
x_k = x(z_k)
$$

\n
$$
\omega_{xk} = \omega_x(z_k)
$$

\n
$$
A_{xk} = A_x(z_k)
$$

\n
$$
\varphi_{xk} = \varphi_x(z_k)
$$

The electron position at z_1 is given by (22).

The initial conditions of the next step are:

$$
\begin{cases}\nx_1 \\
v_{x1} = -A_{x0}\omega_{x0}\sin\left(\frac{\omega_{x0}}{c}\Delta z + \varphi_{x0}\right)\n\end{cases}
$$

The solution at z_1 is given by (23)

Step 2

The electron position at z_2 is given by (24).

The initial conditions of the next step are:

$$
\begin{cases}\nx_2 \\
v_{x2} = -A_{x1}\omega_{x1}\sin\left(\frac{\omega_{x1}}{c}\Delta z + \varphi_{x1}\right)\n\end{cases}
$$

And so on…

22nd February 2019 **Analysis Electron Motion Within the Beam**

Summary:

$$
A_{xk} = \sqrt{x_k^2 + \left(\frac{v_{xk}}{\omega_{xk}}\right)^2}
$$
\n
$$
\varphi_{xk} = -\arctan_{IV} \left(\frac{v_{xk}}{v_{xk}}\right)
$$
\n(26)

$$
x_{k+1} = A_{xk} \cos \left[\frac{\omega_{xk}}{c} \Delta z + \varphi_{xk}\right]
$$

$$
v_{xk+1} = -A_{xk} \omega_{xk} \sin\left(\frac{\omega_{xk}}{c} \Delta z + \varphi_{xk}\right)
$$
 (28)

(27)

Gaussian Longitudinal Profile: Drift Space

• Good agreement between simulation and theoretical prediction

• Good agreement between simulation and theoretical prediction

The equations work well also when the electron oscillates in both the planes

Outline

EXA: Theoretical Oscillation

Uniform Longitudinal Profile

Gaussian Longitudinal Profile

- **Drift Space**
- **Dipole**
- **Arc Quadrupole**
- **▶ Conclusions**

- Good agreement between simulation and theoretical prediction
- In horizontal plane, the electrons cannot move due to the presence of the dipolar magnetic field

Outline

EXA: Theoretical Oscillation

Uniform Longitudinal Profile

Gaussian Longitudinal Profile

- **Drift Space**
- **Dipole**
- **Arc Quadrupole**
- **▶ Conclusions**

- The magnetic field force on the electrons is not negligible compared to the electric field outside the range $\pm 2\sigma_z$
- Good agreement between simulation and theoretical prediction inside the range $\pm 2\sigma_z$

• Good agreement between simulation and theoretical prediction inside the range $\pm 2\sigma_z$

- Good agreement between simulation and theoretical prediction inside the range $\pm 2\sigma$
- The equations work well also when the electron oscillates in both the planes

Outline

- **EXA:** Theoretical Oscillation
- Uniform Longitudinal Profile
- Gaussian Longitudinal Profile
- **Conclusions**

Conclusions

- \triangleright No bugs in the code: we find the frequency we expect (when λ_z is uniform);
- \triangleright When λ_z is Gaussian we can compute local frequencies (for estimating ∆z);

\triangleright This is also valid in the presence of a magnetic field Future Developments

 \triangleright Study the oscillation of all electrons

Thanks for your attention

22nd February 2019 **62**

Extended Presentation

• /eos/user/l/lusabato/e_cloud_studies/milesto nes/2019-02-13_electron_oscillation_8.pptx

Appendix: Amplitude - Phase

$$
\begin{cases}\nA_x^2 = x_0^2 + \left(\frac{v_{x0}}{\omega_x}\right)^2 & (12) \\
\varphi_x = -\arctan_{IV} \left(\frac{v_{x0}}{x_0}\right) = \begin{cases}\n-\arctan\left(\frac{v_{x0}}{x_0}\right) & x_0 > 0 \\
\pm \pi - \arctan\left(\frac{v_{x0}}{x_0}\right) & x_0 < 0\n\end{cases} & (13)\n\end{cases}
$$
\n
$$
A_x \cos(\varphi_x) = x_0 \qquad (10)\n\begin{cases}\nA_x \cos(\varphi_x) = x_0 & (10)\n\end{cases}
$$
\n
$$
A_x \sin(\varphi_x) = -\frac{v_{x0}}{\omega_x} & (11)\n\end{cases}
$$
\n(11)

Appendix: Invariant (2.1)

An Ordinary Differential Equation (ODE) of the second order can be written as a system of two ODE of the first order: \mathbf{J}

$$
\ddot{x} + \omega_x^2 x = 0
$$
\n(6)\n
$$
\frac{dx}{dt} = v_x
$$
\n(6.1)
\n
$$
\frac{dv_x}{dt} = -\omega_x^2 x
$$
\n(6.2)
\n
$$
\alpha^*(6.1) + \beta^*(6.2): \ \alpha \frac{dx}{dt} + \beta \frac{dv_x}{dt} = \alpha v_x - \beta \omega_x^2 x
$$
\n
$$
\frac{d}{dt}(\alpha x + \beta v_x) = \alpha v_x - \beta \omega_x^2 x
$$

In order to have this quantity $(\alpha x + \beta v_x)$ constant with the time:

$$
\alpha v_x - \beta \omega_x^2 x = 0 \qquad \beta = \alpha \frac{v_x}{\omega_x^2 x} \quad (21)
$$

Substituting (14) in the invariant:

$$
(\alpha x + \beta v_x) = \frac{\alpha}{x} \left(x^2 + \frac{v_x^2}{\omega_x^2} \right)
$$

(22)

Appendix: Invariant (2.2)

In order to have the same invariant (13), we can choose α .

$$
\alpha = \frac{1}{2} m_e \omega_x^2 x
$$
 (23) $\beta = \frac{1}{2} m_e v_x$ (24)
($\alpha x + \beta v_x$) = $\frac{1}{2} m_e \omega_x^2 \left(x^2 + \frac{v_x^2}{\omega_x^2} \right)$ (25)

Gaussian Longitudinal Bunch Profile: Drift Space $A_{x \text{goal}} = 0.1 \text{ mm}$ $A_{y \text{goal}} = 0.1 \text{ mm}$ at bunch start **Drift Space** Gaussian Bunch Profile Horizontal **Drift Space** Gaussian Bunch Profile Vertical Simulation Theory 0.3 0.1 0.2 0.0 $\frac{1}{x}$ = 0.1 y [mm] 0.1 0.0 -0.2 -0.1 Simulation Theory -0.3 -0.2 -0.4 -0.3 -0.2 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 -0.1 0.0 0.1 0.2 0.3 0.4 -0.4 z [m] z [m] $\overline{\omega_x}$ $x(z) = A_x \cos$ $Z-\frac{Z_0}{2}$ + φ_x **(9)** $\mathcal{C}_{\mathcal{C}}$ Oscillation Amplitude: Traslation in *z* axis: Oscillation phase: $\Delta z = x^2 + (\frac{v_{x0}}{2})^2$ (12) v_{x0} $Z_0 = 2\sigma_z$ v_{x0} ω_x $A_x^2 = x_0^2 +$ **(13)** $\varphi_x = -arctan_{IV}$ ω_x x_0 Oscillation Angular Frequency: $q_e \lambda_z$ $q_e N_b$ $\omega_x = \sqrt{\frac{q_e q_e}{2 \pi \epsilon_0 m_e} \left(\frac{q_e q_e}{r_e} \right)}$ (3) $\lambda_z = \frac{q_e N_b}{I}$ (4) $2\pi\varepsilon_0 m_e \sigma_x (\sigma_x + \sigma_y)$ \overline{L}

Gaussian Longitudinal Bunch Profile: Quadrupole $A_{\text{xgoal}} = 0.1 \text{ mm}$ $A_{\text{ygoal}} = 0.1 \text{ mm}$ at bucket start Arc Quadrupole **Gaussian Bunch Profile** Horizontal Arc Ouadrupole **Gaussian Bunch Profile** Vertical 0.4 0.4 Simulation Theory 0.2 0.2 x [mm] y [mm] 0.0 0.0 -0.2 -0.2 Simulation -0.4 -0.4 Theory -0.3 -0.2 0.2 0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 -0.1 0.0 0.1 0.4 -0.4 z [m] z [m]

- Discrepancy between the theoretical predictions and the simulations
- The magnetic field force on the electrons might be non-negligible compared to the electric field:
	- 1. considering only the part of the bunch where there are more protons (in the longitudinal centre, for example in the range $\pm 2\sigma_z$)
	- 2. coupling between the planes

