

Low energy electron modelling in PyECLOUD

Eric Wulff

Acknowledgements: Thanks to Giovanni ladarola for helpful discussions and input.

February 22, 2019

Outline

Introduction

Theory of secondary electron emission

The macroparticle approach

Comparison of models and implementation

Comparison of simulation output

Summary

Introduction

In this presentation we will study two of the available secondary emission modules in PyECLOUD [1]. Specifically we will study and compare the standard secondary emission module,

• sec_emission_model_ECLOUD.py

with the secondary emission module for more accurate treatment of low energy electrons,

• sec_emission_model_accurate_low_ene.py.

Theory of secondary electron emission

Secondary electron emission

• Is described by δ , the secondary electron yield (SEY)

(

$$\delta = \frac{I_{emit}}{I_{imp}}$$

- δ depends on the energy of the impacting electrons as well as the angle of incidence
- δ can be divided into components,

$$\delta = \delta_{elas} + \delta_{true} \ (+\delta_{rediff})^1$$

¹Not used in PyECLOUD but sometimes by others, e.g. Furman and Pivi [2]

The SEY Curve

Let's have a closer look at the SEY components of $\ensuremath{\mathsf{PyECLOUD}}$.

The SEY Curve

For high electron energies δ_{true} makes up most of δ and the contribution from δ_{elas} is negligible.

The SEY Curve

For low electron energies δ_{elas} plays an important role.

Consequently, a difference in treatment of the elastic SEY component mainly affects low energy electrons.

The SEY components

February 22, 2019

The SEY components

February 22, 2019

The SEY components

Elastic collision events

- Energy does not change
- Angle of incidence equals angle of reflection

February 22, 2019

True secondary collision events

• True secondary electrons are generated at various angles and various energies

Figure: G. ladarola [3]

February 22, 2019

The macroparticle approach

February 22, 2019

The macroparticle approach

- Due to computational limitations we cannot track individual electrons
- Instead we use macroparticles (MPs), each representing many electrons
- We rescale the MP size instead of adding or removing electrons

February 22, 2019

Comparison of models and implementation

February 22, 2019

Comparison of models and implementation

From here on we will refer to the standard module as ECLOUD and the module for more accurate low energy electron modelling as ACC_LOW.

Comparison of models and implementation

The two modules differ in terms of

- Deciding event type of each collision event (elastic or true secondary)
- Rescaling the MPs

February 22, 2019

Elastic

 $P(elas) = \frac{I_{elas}}{I_{emit}} = \frac{\delta_{elas}}{\delta}$ probability that an emitted electron comes from an elastic event

February 22, 2019

Elastic

 $P(elas) = \frac{I_{elas}}{I_{emit}} = \frac{\delta_{elas}}{\delta}$ probability that an emitted electron comes from an elastic event

True secondary

 $P(true) = \frac{I_{true}}{I_{emit}} = \frac{\delta_{true}}{\delta}$ probability that an emitted electron comes from a true secondary event

I_{imp} I_{emit} I_{elas} I_{ne} Elastic I_{elas} I_{true} $P(elas) = \frac{I_{elas}}{I_{emit}} = \frac{\delta_{elas}}{\delta}$ probability that an emitted electron comes from an elastic event Probabilities are defined from a perspective of the emitted electrons $n_1 = \delta n_0$ $\sigma_1 \sim \cos$ $E_1 = E_0$ n_0, E_0, θ_0 n_0, E_0, θ_0 $\theta_1 = \theta_0$ MP MP θο θ θ1

February 22, 2019

Note: Since we rescale elastically scattered MPs, energy conservation is not respected on single events if $\delta > 1$.

(Averaged over all events, energy conservation is respected)

February 22, 2019

The ACC_LOW module

February 22, 2019

The ACC_LOW module

Elastic

$$\mathsf{P}(\mathit{elas}) = rac{\mathit{I}_{\mathit{elas}}}{\mathit{I}_{\mathit{imp}}} = \delta_{\mathit{elas}}$$

probability that an impacting electron will become elastically scattered

The ACC_LOW module

Elastic

$$\mathsf{P}(\mathit{elas}) = rac{\mathit{I}_{\mathit{elas}}}{\mathit{I}_{\mathit{imp}}} = \delta_{\mathit{elas}}$$

probability that an impacting electron will become elastically scattered Probabilities are defined from a perspective of the impacting electrons

Iemit

I_{elas} I_{true}

I_{imp}

I_{elas} I_{pen}

The ACC LOW module

Flastic

$$\mathsf{P}(\mathit{elas}) = rac{\mathit{I}_{\mathit{elas}}}{\mathit{I}_{\mathit{imp}}} = \delta_{\mathit{elas}}$$

probability that an impacting electron will become elastically scattered impacting electrons

True secondary

 $P(true) = 1 - P(elas) = 1 - \delta_{elas}$

probability that an impacting electron will be in a true secondary event

February 22, 2019

- $\hat{\delta}_{true}$ is the SEY per penetrated current, I_{pen}
- *I_{pen}* is the fraction of *I_{imp}* not elastically scattered

- $\hat{\delta}_{true}$ is the SEY per penetrated current, I_{pen}
- *I_{pen}* is the fraction of *I_{imp}* not elastically scattered

$$\hat{\delta}_{true} = \frac{I_{true}}{I_{pen}} = \frac{I_{true}}{I_{imp} - I_{elast}}$$

February 22, 2019

- $\hat{\delta}_{true}$ is the SEY per penetrated current, I_{pen}
- *I_{pen}* is the fraction of *I_{imp}* not elastically scattered

$$\hat{\delta}_{true} = \frac{I_{true}}{I_{pen}} = \frac{I_{true}}{I_{imp} - I_{elast}}$$

$$= \frac{\delta_{true} I_{imp}}{(1 - \delta_{elas}) I_{imp}}$$

- $\hat{\delta}_{true}$ is the SEY per penetrated current, I_{pen}
- *I_{pen}* is the fraction of *I_{imp}* not elastically scattered

$$\hat{\delta}_{true} = \frac{I_{true}}{I_{pen}} = \frac{I_{true}}{I_{imp} - I_{elast}}$$

$$= \frac{\delta_{true} I_{imp}}{(1 - \delta_{elas}) I_{imp}} = \frac{\delta_{true}}{1 - \delta_{elas}}$$

Comparison of simulation output

February 22, 2019

Simulation setup

Simulations using the ECLOUD and the ACC_LOW secondary emission modules were carried out with the following parameters.

- 450 GeV beam energy
- $2\cdot 10^{11}$ protons/bunch
- SEY parameter $\delta_{max} = 2.0$
- Circular drift tube with 44 mm diameter

Extracted SEY Curves

As expected, the extracted SEY curves from the two modules are the same.

Extracted SEY curves

Electron cloud build-up

At first glance the simulation results look very similar.

February 22, 2019

Electron cloud build-up

At first glance the simulation results look very similar.

Let's zoom in on the first part of the second train.

Electron cloud build-up

The buildup is slightly faster in the standard ECLOUD model compared to the ACC_LOW model.

Will this have and effect on the heat load?

Standard ACC LOW 2.0 1.5 1.0 0.5 0.0 8000 9000 10000 11000 12000 13000 Time [ns]

Number of electrons in chamber

February 22, 2019

How does the produced heat load differ between the two models?

Heat load

How does the produced heat load differ between the two models?

There are no, or only very small, differences.

Electron current

Let's also have a look at the current impacting on the beam screen.

Electron current

Let's also have a look at the current impacting on the beam screen.

Again, no, or very small, differences.

Summary

- We have studied and compared the secondary emission modules sec_emission_model_ECLOUD.py and sec_emission_model_accurate_low_ene.py in PyECLOUD.
- There is no difference in the δ_{true} or δ_{elas} .
- The electron cloud buildup is slightly slower with the ACC_LOW module.
- The differences in simulation output of observables like beam screen heat load and current are negligible.

References

Giovanni Iadarola. PyECLOUD.

https://github.com/PyCOMPLETE/PyECLOUD, 2018.

M. A. Furman and M. T. F. Pivi.

Probabilistic model for the simulation of secondary electron emission.

Phys. Rev. ST Accel. Beams, 5:124404, Dec 2002.

Giovanni Iadarola.

Electron Cloud Studies for CERN Particle Accelerators and Simulation Code Development.

PhD thesis, Università degli Studi di Napoli Federico II, Napoli, Italy, and European Organization for Nuclear Research (CERN), Geneva, Switzerland, March 2014.

home.cern