

Investigating the secondary electron energy spectrum

Eric Wulff

Acknowledgements: Thanks to Giovanni ladarola for helpful discussions and input.

Introduction

The models

Comparison of simulation output

Summary

Introduction

• A new feature has been implemented¹ in PyECLOUD to ensure that true secondary electrons cannot have higher energies than the impacting electron that gave rise to them.

¹Not yet released

Introduction

- A new feature has been implemented¹ in PyECLOUD to ensure that true secondary electrons cannot have higher energies than the impacting electron that gave rise to them.
- We will study the effect of this new feature on simulation results and compare with previous simulations

¹Not yet released

Short recap: elastic and true secondary

April 5, 2019 Investigating the secondary electron energy spectrum

Short recap: elastic and true secondary Elastic

Emitted energy equals impacting energy.

Short recap: elastic and true secondary

Elastic

Emitted energy equals impacting energy.

True secondary Emitted energies follow a lognormal distribution.

Short recap: elastic and true secondary

Elastic

Emitted energy equals impacting energy.

True secondary Emitted energies follow a lognormal distribution. We will focus on the true secondaries in these slides.

The models

April 5, 2019 Investigating the secondary electron energy spectrum 6

The default model

- The energy of emitted true secondary MPs are independent of their impacting energy
- The energies are drawn from a lognormal distribution cut at 35 eV

$$\frac{dn_{true}}{dE} = \frac{1}{E\sigma_{true}\sqrt{2\pi}} \ e^{-\frac{\left(\ln(E) - \mu_{true}\right)^2}{2\sigma_{true}^2}}$$

The default model

- The energy of emitted true secondary MPs are independent of their impacting energy
- The energies are drawn from a lognormal distribution cut at 35 eV

Problem: An impacting MP with energy $E_{imp} < 35$ eV can give rise to secondaries with $E > E_{imp}$

$$\frac{dn_{true}}{dE} = \frac{1}{E\sigma_{true}\sqrt{2\pi}} \ e^{-\frac{(\ln(E) - \mu_{true})^2}{2\sigma_{true}^2}}$$

- Emission energies are still drawn from the same lognormal distribution
- The distribution is now cut at the impacting energy of the MP
- This ensures that we do not emit MPs with higher energies than the impacting MP

- Note that energy conservation can still be broken in single events due to rescaling and splitting of MPs.
- This happens only very rarely and averaged over many events energy is still conserved.

- Also note that PyECLOUD uses a variable, E_th, which specifies the maximum energy a true secondary MP is allowed to be generated with. This variable is still used in the new model.
- Typically, including in the following, E_th is set to 35 eV.

- The energy distribution of secondary electrons from simulation is shown in the histogram to the right
- The black curve is the usual lognormal distribution used in PyECLOUD cut at the impacting energy and then renormalised

- The energy distribution of secondary electrons from simulation is shown in the histogram to the right
- The black curve is the usual lognormal distribution used in PyECLOUD cut at the impacting energy and then renormalised

- The energy distribution of secondary electrons from simulation is shown in the histogram to the right
- The black curve is the usual lognormal distribution used in PyECLOUD cut at the impacting energy and then renormalised

- The energy distribution of secondary electrons from simulation is shown in the histogram to the right
- The black curve is the usual lognormal distribution used in PyECLOUD cut at the impacting energy and then renormalised

• Let's now zoom in to get a better look

• Let's now zoom in to get a better look

Note: Scales on axes change between plots

 Let's now zoom in to get a better look

Note: Scales on axes change between plots

switch_no_increase_energy=2 2.5 Model PDF Normalized energy spectrum Simulation $E_{imp} = 0.9 \text{ eV}$ 0.0 0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0 9 Electron energy [eV]

- Let's now zoom in to get a better look
- To reduce computational cost, energies are generated from a linear distribution when *E_{imp}* < 1 eV

Note: Scales on axes change between plots

5 Model PDF Normalized energy spectrum Simulation $E_{imp} = 0.5 \text{ eV}$ 0.0 0.1 0.2 03 0.4 0.5 Electron energy [eV]

- Let's now zoom in to get a better look
- To reduce computational cost, energies are generated from a linear distribution when *E_{imp}* < 1 eV

Comparison of simulation output

Simulation setup

Simulations using switch_no_increase_energy=0 and 2 were carried out with the following parameters.

- 450 GeV beam energy
- $2\cdot 10^{11}$ protons/bunch
- SEY parameter $\delta_{max} = 2.0$
- · Circular drift tube with 44 mm diameter

Electron cloud build-up

April 5, 2019 Investigating the secondary electron energy spectrum 13

Electron cloud build-up

Practically no difference can be seen between the two models.

Electron cloud build-up

Zooming in on the second train, the results still look very similar.

Number of electrons in chamber

How does the produced heat load differ between the two models?

Heat load

How does the produced heat load differ between the two models?

We see no or very small differences.

Electron current

Let's also have a look at the current impacting on the beam screen.

Electron current

Let's also have a look at the current impacting on the beam screen.

Again, no or very small differences.

Summary

- An option to generate true secondary electron energies in a new way has been implemented in PyECLOUD.
- This new option ensures that an MP cannot be emitted with higher energy than it impacted with.
- Switching the option on did not result in any significant changes in e-cloud build-up, heat load or electron current for the simulations performed in this study.

home.cern