
FTS scalability improvements and plans

Edward Karavakis

on behalf of the FTS team

19/02/19 FTS scalability improvements & plans 1

Outline

• Scheduler Improvements

• Future work

19/02/19 FTS scalability improvements & plans 2

Scheduler Improvements

19/02/19 FTS scalability improvements & plans 3

Motivation

• ATLAS pushing for a single FTS instance

• Scheduler’s performance is affected when

there are many links and many submitted

transfers – takes a lot of time to make a

decision

• Basic SELECT queries can take tens of

seconds to return and everything seems

bloated and stuck

19/02/19 FTS scalability improvements & plans 4

Methodology

• FTS3-DEVEL-NEXT cluster (3 VMs) and DBoD
(identical to FTS-ATLAS)

• Downloaded the slow queries log file for several
days from the DBoD portal

• Examined all the slow queries taking more than
10 seconds to run
• Passing them from a MySQL query profiler

• Analysing performance and cost of the query

• Investigating the use (or not) of an index and if it's
the appropriate one

• Adding missing indices and minor optimisations
to the schema

19/02/19 FTS scalability improvements & plans 5

Optimised queries
SELECT DISTINCT t_file.vo_name, t_file.source_se, t_file.dest_se FROM t_file INNER
JOIN t_job ON t_file.job_id = t_job.job_id WHERE t_file.file_state = ‘SUBMITTED’ AND
(t_file.hashed_id BETWEEN 0 AND 21844) AND t_job.job_type = ‘Y’ ;

"query_cost": "908713.52"
"data_read_per_join": "170M"

After adding two indices, one on file_state and one on job_type with:

ALTER TABLE `t_file` ADD INDEX `idx_state` (`file_state`) ;

ALTER TABLE `t_job` ADD INDEX `idx_jobtype` (`job_type`) ;

"query_cost": "3.24"
"data_read_per_join": "4K"

SELECT DISTINCT t_file.vo_name, t_file.source_se, t_file.dest_se FROM t_file INNER
JOIN t_job ON t_file.job_id = t_job.job_id WHERE t_file.file_state = ‘SUBMITTED’ AND
(t_file.hashed_id BETWEEN 45871 AND 52423) AND t_job.job_type = ‘Y’ ;

"query_cost": "909043.89"
"data_read_per_join": "938M"

After adding the job_type index:

"query_cost": "3.24"
"data_read_per_join": "4K"

19/02/19 FTS scalability improvements & plans 6

Optimised queries (cont.)
SELECT DISTINCT t_file.vo_name, t_file.job_id FROM t_file INNER JOIN t_job ON

t_file.job_id = t_job.job_id WHERE t_file.file_state = 'SUBMITTED' AND

(t_file.hashed_id >= 13106 AND t_file.hashed_id <= 19658) AND t_job.job_type =

'H' AND (t_file.retry_timestamp IS NULL OR t_file.retry_timestamp < '2018-10-23

01:20:26');

"query_cost": "812493.93"

"data_read_per_join": "698M"

By using the new `idx_jobtype` index:

"query_cost": "3.24"

"data_read_per_join": "4K"

SELECT COUNT(*) FROM t_job WHERE source_se = 'gsiftp://eosatlassftp.cern.ch' AND

dest_se = 'srm://grid-se.physik.uni-wuppertal.de' AND job_type IN ('Y', 'H')

AND job_state = 'ACTIVE';

"query_cost": "42628.80"

"data_read_per_join": "3M"

using idx_link

Using the jobtype index that we added previously:

"query_cost": "4.81"

"data_read_per_join": "238"

19/02/19 FTS scalability improvements & plans 7

Optimised queries (cont.)
SELECT COUNT(*) FROM `t_file` WHERE (`t_file`.`finish_time` >= '2018-11-01 00:00:49' AND

`t_file`.`transfer_host` = 'fts-devel-next001.cern.ch');

"query_cost": "225269.41"

"data_read_per_join": "470M"

time to finish 3.425 seconds

using the idx_finish_time index on the date range.

An index on the transfer_host really makes sense as we only have a handful of hosts. After adding this index:

ALTER TABLE `t_file` ADD INDEX `idx_host` (`transfer_host`) ;

"query_cost": "207489.60"

"data_read_per_join": "67M"

time to finish 0.432 seconds

delete from t_optimizer_evolution where datetime < (UTC_TIMESTAMP() - interval '6' DAY);

Performing a full table scan and locking the table, added an index on datetime:

ALTER TABLE `t_optimizer_evolution` ADD INDEX `idx_datetime` (`datetime`) ;

19/02/19 FTS scalability improvements & plans 8

Schema optimisations
• Denormalise priority in DB (suggested by

Brian Bockelman)

• Expensive join between job and file tables

• Priority replicated also in the file table

• FTS REST was changed to also store the

priority in the file

19/02/19 FTS scalability improvements & plans 9

SELECT MAX(priority) FROM t_job, t_file WHERE t_file.job_id =

t_job.job_id AND t_file.vo_name=‘ABC' AND

t_file.source_se=‘AAA' AND t_file.dest_se=‘BBB' AND

t_file.file_state = 'SUBMITTED'

SELECT MAX(priority) FROM t_file WHERE vo_name=‘ABC' AND

source_se=‘AAA' AND dest_se=‘BBB' AND file_state = 'SUBMITTED';
Indexed

Stress testing

• 15 million files with 2000 links & duration of

5 mins

• Mock endpoints without staging

• Production VS new proposed schema (FTS

3.8 vs 3.9)

• Test was performed multiple times –

numbers are averages

19/02/19 FTS scalability improvements & plans 10

Results
Files 3.8

(in minutes)

3.9

(in minutes)

Diff

(in minutes)

1M 0:30 0:22 0:08

1.5M 0:34 0:24 0:10

3M 0:35 0:25 0:10

4.5M 0:46 0:31 0:15

5M 0:48 0:34 0:14

6M 0:49 0:36 0:13

6.7M 0:50 0:37 0:13

7M 1:06 0:41 0:25

7.5M 1:10 0:42 0:28

8M 1:14 0:43 0:31

8.7M 1:16 0:45 0:31

9M 1:18 0:47 0:31

9.5M 1:23 0:49 0:34

10M 1:50 0:50 1:00

15M 7:00 1:10 5:50

19/02/19 FTS scalability improvements & plans 11

Time for the scheduler to run

Observations

• All queries that were taking more than 10

seconds to run do not appear anymore in

the log of slow queries

• Issues that still remain

• Procedure cleaning historical data -> DB is

loaded when it runs. The more files you have,

the more it takes to clean

• Problem with the WebMon breaking and not

loading at around 17M submissions

19/02/19 FTS scalability improvements & plans 12

Observations (cont.)

• Don't think we can have one FTS instance

per experiment with the 3.9 improvements

• More number of active transfers per instance,

meaning more nodes so more load on the DB

• More polling from Rucio and/or other clients

(maybe moving clients to Messaging?)

• More staging that was not considered in the

tests but also impacts DB performance

• If issue is the diff configs of servers, maybe a

central repo to share their configs will be ok?

19/02/19 FTS scalability improvements & plans 13

Future work

19/02/19 FTS scalability improvements & plans 14

Upcoming work for this year
• Measure the time it takes to upgrade DB schema from 3.8

to 3.9

• Repeat the same stress test with staging to check the
impact

• Release 3.9 that will include these optimisations

• Further optimisations to be able to have a single instance
per experiment
• DB partitioning and /or separation of tables with only

ACTIVE/QUEUED transfers

• Dedicated FTS rest machines that will only handle the polling

• Implement protection to avoid duplicate submissions of
the same file as requested by ATLAS

19/02/19 FTS scalability improvements & plans 15

2020 and beyond

• Improvements currently performed focus on

Run3

• Thinking about the future, we need

an architectural change in order to handle the

increased load of Run4

• Move out of MySQL?

• Investigate a queue technology like QuarkDB?

• Have only one scheduler polling that will send

transfers via messaging to different agents?

19/02/19 FTS scalability improvements & plans 16

Questions?

19/02/19 FTS scalability improvements & plans 17

