
https://root.cern

ROOT
Data Analysis Framework

Faster Collections in RooFit

S. Hageboeck (CERN, EP-SFT) for the ROOT team

https://root.cern

Intro

RooFit has three kinds of collections:
▶ RooLinkedList:

● Linked list of most general class in RooFit (RooAbsArg)
● Memory pool for faster allocations & more data locality
● Can enable a hash list to faster find elements by name

▶ RooArgSet:
● Set of RooAbsArgs
● RooLinkedList at backend

▶ RooArgList:
● List of RooAbsArgs. Mostly used like a std::vector.
● RooLinkedList at backend

▶ Most common operations (for all three):
● Forward iteration!!
● Search element by name or address (= forward iteration)
● Add element (to back!)

2

RooLinkedList

std::vector

3

CERN has licenses:
source /cvmfs/projects.cern.ch/intelsw/psxe/linux/all-setup.sh

RooAbsCollection
Collections:

▶ Expression tree (+ almost
everything in RooFit) stored as
RooLinkedList<RooAbsArg*>

● Often small search & iterates
▶ Toy MonteCarlo generation:

● ~50% of L3 cache misses due
to linked list + hash table
operations

▶ The plan:
● Replace LinkedList by

std::vector
● Provide STL-like interface

4

The Challenge

▶ Axel: “How much user code are you going to break?”
→ All …

▶ The old collections directly expose the underlying storage implementation
through the iterators

5

Solution

▶ Three kinds of old iterators need
to be supported (all in use)

▶ RooLinkedList not completely
gone anyway

▶ Write wrapper that delegates to
RooLinkedList or STL as needed

▶ Downside: slower
● Extra layer with virtual

dispatch
● Need to create&destroy

iterators (and hand into
userland) for polymorphy

6

The Challenge II

▶ RooLinkedList:
● Remove/add/replace before and after

current iterator
● No reallocations → iterator valid

▶ Solution: Legacy-to-STL adapters count
● Can remove/add after iterator
● Can replace everywhere
● Safe also if reallocating
● But: Will break when removing/adding

before iterator

7

The Challenge II

▶ Detect broken loops:
● Unless NDEBUG set, legacy

iterators check if they point to
the same element before
incrementing

● Fail noisily if not

▶ Does this happen?
● RooFit: two in hundreds

of loops
● User code:

Users usually just
forward-iterate 8

Is this the right way to notify users?

The Legacy Iterators now
▶ All legacy iterators work
▶ Slower than before
▶ Deprecated in Doxygen

▶ Flagged with
R__SUGGEST_FUNCTION*:
● Requested during user’s

workshop
● Flags functions/classes

whose use is discouraged,
but won’t be fully deprecated

● https://github.com/root-project/root/
pull/3100

9
* Names not finalised. Opinions?

https://github.com/root-project/root/pull/3100
https://github.com/root-project/root/pull/3100

The Legacy Iterators now
▶ All legacy iterators work
▶ Slower than before
▶ Deprecated in Doxygen

▶ Flagged with
`R__SUGGEST_FUNCTION`*:
● Requested during user’s

workshop
● Flags functions/classes

whose use is discouraged,
but won’t be fully deprecated

● https://github.com/root-project/root/
pull/3100

10

#define R__SUGGEST_FASTER_FUNCTIONS*

root-src/roofit/roofitcore/src/RooAbsCollection.cxx:725:
21: warning: 'fwdIterator' is deprecated:
This function has faster/more secure alternatives:
begin(), end() and range-based for loops.
[-Wdeprecated-declarations]
 RooFIter iter = fwdIterator() ;
 ^

* Names not finalised. Opinions?

https://github.com/root-project/root/pull/3100
https://github.com/root-project/root/pull/3100

First Speed Tests
▶ No standardised benchmarks for

RooFit
▶ My solution:

● Run all ctests 5x
● Calculate truncated mean of

best 4 runs
▶ Result:

When legacy iterators are used
heavily, RooFit is ~20% slower

▶ Then: Repeat following cycle
● VTunes
● Check what’s slow
● Replace LegacyIterator by

for (auto elm :
collection)

11

Start using std::vector

Replace a few
iterators

Legacy Iterators are Easy to Find

12

Speed Tests II
▶ Couple of iterations of:

● VTunes
● Check what’s slow
● Replace LegacyIterator by

for (auto elm :
collection)

▶ RooFit faster than before
▶ To do:

● Replace more iterators
● Old collections only contain

RooAbsArg*:

▶ New collection is templated!
● No time to replace properly ...

13

for (auto elm : list) {
 auto realVar = static_cast<RooRealVar*>(elm)

Addendum: RooRefCountList

▶ While profiling, RooLinkedList
still showed up

▶ Turns out to be a
reference-counting list
● Saves an element and a number
● When iterating, ref count is not used
● Fully represented by

std::vector<Element_t>
std::vector<size_t>

14

RooRefCountList → RooSTLRefCountList

▶ RooRefCountList reimplemented as
header-only RooSTLRefCountList

▶ + conversion functions for I/O
▶ Seamlessly replaces RooRefCountList

● Should change iterators, though:
→ faster

▶ Internal to RooFit
→ Users shouldn’t notice (just faster)

▶ To do:
● Only slow & heavily-used instances

have been replaced

15

{...}

{...} @Axel: Eclipse
spell-checks. Already fixed.

Summary I
▶ RooFit now iterates 20 - 30% faster

● Real-world example:
My H → bb thesis measurement
◼ 11:30 min → 9:20 min
◼ 586 Mb → 579 Mb
◼ Identical result!

▶ Old iterators still work
● Only ~25% replaced in RooFit
● Replacing makes iteration faster
● Slowest places presumably taken care of
● Caveats:

◼ Modifying collection in front of iterator
not possible, any more

◼ Can be detected if NDEBUG not set
16

Summary II

▶ New iterators look and feel
like STL

▶ Two branches (almost) ready:
● https://github.com/hageboeck/root/tree/Impr

oveRooAbsCollection
● https://github.com/hageboeck/root/tree/Repla

ceRooRefCountList

▶ PRs after cleanup + a bit of
doxygen here and there

17

https://github.com/hageboeck/root/tree/ImproveRooAbsCollection
https://github.com/hageboeck/root/tree/ImproveRooAbsCollection
https://github.com/hageboeck/root/tree/ReplaceRooRefCountList
https://github.com/hageboeck/root/tree/ReplaceRooRefCountList

Backup

Speed Tests for Short RooFit Examples

19

