

D2 design, short model manufacturing and test

<u>S.Farinon</u>, A.Bersani, B.Caiffi, R.Cereseto, P.Fabbricatore, A.Pampaloni (INFN) A.Foussat, E.Todesco (CERN)

CERN – March 11th 2019

Outline

- Design of D2 magnet
- Short model (MBRDS1) construction at ASG Superconductors
- Short model (MBRDS1) test at CERN
- Prototype (MBRDP1): see P.Fabbricatore presentation

MBRDS1 design

The D2 prototype cross section

Main characteristics of the	D2 dipole
Bore magnetic field	4.5 T
Magnetic length	7.78 m
Peak field	5.26 T
Operating current	12.330 kA
Stored energy	2.26 MJ
Overall current density	478 A/mm ²
Magnet physical length	8.01 m
Aperture	105 mm
Beam separation at cold	188 mm
Operating temperature	1.9 K
Loadline fraction	67.5%
Multipole variation due to iron saturation	<10 units

The D2 short model cross section

Istituto Nazionale di Fisica Nucleare

 The D2 short model scope of work does not includes magnet fillers and shell

Main characteristics of the	D2 dipole
Bore magnetic field	4.5 T
Magnetic length	1.371 m
Peak field	5.26 T
Operating current	12.34 kA
Stored energy	2.28 MJ
Overall current density	479 A/mm ²
Magnet physical length	1.6 m
Aperture	105 mm
Beam separation at cold	188 mm
Operating temperature	1.9 K
Loadline fraction	67.5%
Multipole variation due to iron saturation	<10 units

Electromagnetic model:

- in D2 magnet, magnetic
 fields in the two apertures
 are oriented in the same direction
 in the region between the two aperture the field adds up saturating the iron yoke (if any)
- the solution of LHC D2, to decouple the magnetic fields in the two apertures using iron yoke, is no more viable
- we decided to remove iron yoke between the aperture and tune the field quality via a-symmetric winding

Electromagnetic model

 both left and right branches of each coil are made by 5 blocks and 31 turns (15+6+4+4+2)

Lorentz forces at 4.5 T

- F_x=196 kN/m and corresponds to the unbalance between the left and right part of each coil (F_{xA}=+1351 kN/m and F_{xB}=-1155 kN/m)
- Fy=-845 kN/m (F_{xA} =-433 kN/m and F_{xB} =-412 kN/m)

Mechanical design: considerations on collaring

- to reduce the risks of the collaring operation we decided to
 - collar individually each aperture

Stefania Farinon

- design a fully symmetric collar
- the collar dimensions are determined by the (warm) distance D between the coils

- the Lorentz forces being repulsive, we need a mechanical structure able to withstand them
- to preserve the field quality, we should avoid coils misalignments respect to one another and respect to the iron yoke
- the iron yoke being elliptical, it is preferable to give it no mechanical function
- we look for a solution where the collars have the main mechanical role, the iron yoke being almost a mere magnetic component

Mechanical design: collaring of a single aperture

- to follow the iron yoke window, collars are squared
- the overall dimensions are 188.7×188.7 mm² (188.7 mm is the warm beam distance)
- the collar inner radius is 69 mm, so the thickness on the midplane is ~25 mm
- the nose is modular (this choice is not confirmed for the prototype)

Mechanical design: collared coils and iron yoke coupling

- once the collared coils are inside the iron yoke, there is a gap (9 mm thick on the midplane, and 10 mm thick axially)
- instead of simply filling this gap with inert materials, we decided to give it multiple mechanical functions

Mechanical design: aluminum alloy sleeve

Stefania Farinor

 to compensate the thermal contractions, the selected material is AI alloy

 $(\alpha_{AI \text{ alloy}}=4.3\%, \alpha_{SS}=2.4\%, \alpha_{iron}=1.8\%)$

- the length of each Al alloy sleeves is 61 mm (to compensate longitudinal thermal contractions)
- to make the insertion possible, there is a warm gap 0.4 radially and 0.6 axially mm thick between collared coil and Al alloy sleeves (~closed at cold)
- this gap can be almost doubled by heating the sleeves

Mechanical design: aluminum alloy sleeve functions

- two small holes are used to align horizontally the coils at warm (no mechanical function)
- at cold the gap between AI alloy sleeves and collared coils closes. No movement of a coil with respect to the other is still possible
- a pin between iron an AI alloy sleeve keeps the vertical alignment

Mechanical design: iron yoke

Stefania Farinon

- the iron yoke has very limited mechanical function, it helps the Al sleeves in keeping the repulsive force between the aperture
- a 1.2 mm gap is closed at warm under pressure to allow the insertion of the Cclamps
- this mechanism ensures the horizontal alignment

a continuous bar is then welded on the top of the C-clamps to give some longitudinal strength to the assembly

Resulting stress in winding

	<o_<sub>eqv> in conductors [Pa]</o_<sub>	<σ _θ > in conductors [Pa]	<o<sub>eqv> in windings [Pa]</o<sub>	<σ _θ > in windings [Pa]
collaring	86	-92	78	-82
collaring pressure relieved	74	-79	69	-72
yoke integration	75	-80	70	-73
cool-down	49	-49	44	-45
energization @ I _{nominal}	52	-53	43	-44
energization @ I _{ultimate}	53	-54	43	-45

assembly

Istituto Nazionale di Fisica Nucleare

cool down

energization @ I_{ultimate}

Mechanical concept: longitudinal preload

Stefania Farinon

- longitudinal preload is supplied by 6 tie rods:
 - 2 central rods 33 mm in diameter
 - 4 side rods 24 mm in diameter
- the load is transferred to the coils through 16 bullet gauges per side acting on the end flange
- the total preload on the short model was 50% of the Lorentz force (125 kN) equally distributed on the ties rods

Quench protection with QHs

Stefania Farinon

Operating mode	Max temp. (K) [<300 K]	Peak voltage to ground (V)	Peak turn-to turn voltage (V)
Standard Two circuits per aperture One circuit per coil working: 1,6,3,8→ All coils quench	247	152	35
Fail 1 One circuit fails (1) Three working : 6,3,8 → Three coils quench	282	600	44

CERN March 11th 2019

17

MBRDS1 manufacturing at ASG

Winding activity

- Winding activity started on March 2018
- 1 practice pole (A01) and 3 standard poles (B01, A02 and B02) were successfully wound
- Winding activity was completed on June 2018
- The 4 poles passed all controls (coil resistance and inductance measurements, interturn insulation and ground insulation tests)

Collaring

- Collaring operations started at the beginning of August
- Aperture #1: coil A01 and B02
 - collaring started on 2/8/18 and ended on 6/8/18
- Aperture #2: coil A02 and B01
 - collaring performed on 7/9/18 in less than 2 hours

Non-conformity in aperture I: refined electrical measurements

Refined electrical measurements taking also advantages of the internal voltage taps:

VT id	A01 [mV]	A02 [mV]	B01 [mV]	B02 [mV]
E\1 1\2	7,111 22,300 15,187	25,29 25,29	10,150 25,15 15,270	10,060 25,20 15,010
2\3	15,827	15,900	15,880	15,650
3\4	24,750	24,900	24,940	24,480
4\U	70,900	71,400	71,600	71,000
Somma Tot mis	133,775 133,7	137,490 137,3	137,840 137,3	136,200 136,7

I=1.000A 0\+0.008

mV \ spira (media)

4,429032

- about 3 m Ω missing at E/1confirmed the presence of a short in the 5th block
- a non-conformity was issued due to an evidence of short in coil A01

Stefania Farinon

Re-collaring of aperture I

• Aperture I was de-collared, but no evidence of shorts could be found:

 ASG thought the reason could be a metallic chip, residue of the copper stabilizer soldering, lost after de-collaring

Stefania Farinon

 To stay on the safe side, it was decided to unglue the two turns of the fifth block, then insulate, glue (with resin) and re-collar

Field quality measurements of collared apertures

Magnetic mesurements on single aperture, straight section @ 50A:

		b2	b3	b4	b5	b6	b7	b 8	b9	b10	b11	b12	b13	b14	b15
meas. @ 50 A		-195	181	-35.0	6.7	-3.9	0.0	-1.0	0.8	0.0	-1.2	-1.1	-1.2	-0.8	-0.5
simulations		-208	169	-37.2	0.7	-1.6	-0.1	-0.6	0.1	-0.1	-2.1	-1.9	-2.0	-1.0	-0.8
 meas. @ 50 A		187	178	35.7	9.0	4.4	0.8	-0.8	0.5	0.0	-2.3	3.5	-1.7	1.7	-0.9
 simulations		208	169	36.8	0.7	1.9	-0.1	0.4	0.1	0.1	-2.1	1.9	-2.0	1.1	-0.8
	a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12	a13	a14	a15
meas. @ 50 A	0.0	-4.4	-0.6	0.8	2.5	0.5	1.5	0.0	0.0	0.0	0.3	0.4	0.5	1.0	0.5
simulations	-1.9	0.2	-0.3	0.0	-0.1	-0.1	-0.1	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0
 meas. @ 50 A	0.0	-6.0	-5.4	-1.2	0.9	1.5	1.7	0.6	-0.3	0.0	-1.8	0.1	0.1	0.2	0.5
 simulations	-1.1	0.1	0.2	0.0	0.0	-0.1	-0.1	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0

8th HL-LHC Collaboration Meeting

Stefania Farinon

Al Alloy sleeves and iron yoke assembly

Short model warm magnetic measurements: normal components

- main issues are related to b₂, b₃ and b₅
- coil end components are in good agreement with simulations

					Integrals							Integrals
Aperture 1	LC	straight	LOC	Integrals	extrapolated		Aperture 2	LC	straight	LOC	Integrals	extrapolated
					to 8 m							to 8 m
C1 (gauss)	105.4	207.6	101.2				C1 (gauss)	104.3	207.6	100.0		
b1	10000	10000	10000	10000	10000		b1	10000	10000	10000	10000	10000
b2	48.7	12.8	64.2	36.0	17.0		b2	-40.5	-9.4	-60.1	-31.0	-13.3
b3	17.2	9.2	17.2	13.5	9.9		b3	17.7	10.0	17.0	13.9	10.7
b4	-7.5	2.1	-0.8	-1.3	1.5		b4	11.9	-0.4	2.9	3.8	0.4
b5	12.9	6.9	0.3	6.8	6.9		b5	13.3	9.3	3.5	8.9	9.2
b6	-3.7	-1.7	-4.3	-2.9	-1.9		b6	5.9	1.7	1.4	2.7	1.9
b7	-4.7	-0.3	-8.1	-3.6	-0.9		b7	-3.2	0.0	-7.5	-2.8	-0.5
b8	-0.8	-0.7	-1.7	-1.0	-0.8		b8	0.8	-0.2	-0.5	0.0	-0.2
b9	-1.4	0.6	-2.8	-0.8	0.3		b9	-1.6	0.8	-2.8	-0.8	0.5
b10	0.0	0.0	0.0	0.0	0.0		b10	0.0	0.0	0.0	0.0	0.0
b11	-1.4	-1.1	-1.7	-1.3	-1.1		b11	-1.1	-0.5	-0.2	-0.6	-0.5
b12	-0.7	-1.2	-0.6	-0.9	-1.2		b12	1.5	2.0	1.9	1.8	1.9
b13	-0.7	-0.9	-0.8	-0.8	-0.9		b13	-0.3	0.6	-0.3	0.1	0.5
b14	0.0	-0.6	-0.5	-0.4	-0.6		b14	1.4	0.1	1.2	0.7	0.2
	0.0	-0.4	-0.5	-0.3	-0.4	v on D	b15 Tand D2 super	0.1	0.4	-0.8	0.0	0.3

2D model including mechanical effects of "real" cross section

 the field quality is calculated starting from the conductor positions coming from a mechanical analysis where the worst "as built" wedges have been modeled

Normal components in the straight part compared to FE calculations

- Cu wedges out of tolerance accounts quite well for all variations except b₂
- running a special optimization using roxie, we verified that block layouts with large b₂ do exist with wedge variations within 200 µm
- we are still investigating other realistic source of b₂ deviation
- we need a confirmation of ASG magnetic measurements

	b2	b3	b4	b5	b6
meas. @ 50 A	12.8	9.2	2.1	7.0	-1.7
2D nominal	-2.4	-2.2	0.4	0.6	0.0
2D FEA mechanics	-2.6	0.8	0.7	2.7	-0.1
2D FEA mechanics+real wedges	0.9	11.5	0.3	3.2	-1.0
meas. @ 50 A	-9.4	10.0	-0.4	9.3	1.7
 2D FEA nominal	2.4	-2.2	-0.4	0.6	0.0
2D FEA mechanics	2.6	0.8	-0.7	2.7	0.1
2D FEA mechanics+real wedges	-0.9	11.5	-0.3	3.2	1.0

Short model warm magnetic measurements: skew components

 large skew components on the connections side are possibly due to very long exits and wiring

Aperture 1	LC	straight	LOC	Integrals	Integrals extrapolated to 8 m	Aperture 2	LC	straight	LOC	Integrals	Integrals extrapolated to 8 m
C1 (gauss)	105.4	207.6	101.2		•	C1 (gauss)	104.3	207.6	100.0		•
a1	2.0	0.9	3.1	1.8	1.1	a1	-1.1	-0.3	0.4	-0.3	-0.3
a2	17.3	2.4	8.8	8.2	3.5	a2	8.9	4.0	-4.0	3.2	3.9
a3	-31.7	-2.4	1.6	-9.3	-3.6	a3	-29.6	-1.8	3.1	-8.1	-3.0
a4	6.8	1.0	-0.1	2.3	1.2	a4	-2.0	-0.6	0.3	-0.7	-0.6
a5	-4.2	1.7	1.4	0.0	1.4	a5	-5.8	1.4	0.3	-0.8	1.0
a6	1.8	0.5	1.4	1.1	0.6	a6	1.6	1.6	4.1	2.3	1.7
a7	-0.2	1.0	0.5	0.6	0.9	a7	-0.8	1.1	0.1	0.4	1.0
a8	1.3	0.0	0.0	0.4	0.1	a8	0.4	0.1	1.0	0.4	0.2
a9	-1.2	0.1	-0.2	-0.3	0.0	a9	-1.3	-0.3	-0.4	-0.6	-0.3
a10	0.0	0.0	0.0	0.0	0.0	a10	0.0	0.0	0.0	0.0	0.0
a11	-0.4	0.1	0.2	0.0	0.1	a11	-1.4	-0.4	-1.2	-0.9	-0.5
a12	-0.9	0.3	0.8	0.1	0.3	a12	0.0	0.3	1.1	0.4	0.3
a13	-0.1	0.6	0.8	0.5	0.6	a13	-0.9	-0.5	-0.1	-0.5	-0.5
a14	0.7	1.0	1.2	1.0	1.0	a14	0.4	1.0	1.1	0.8	0.9
a15	0.7	0.4	0.4	0.5	0.4	a15	0.3	0.5	0.5	0.5	0.5

D2 short model completed

International review on D1 and D2 superconducting magnets for HL-LHC CEI

D2 short model delivered to CERN on Jan. 17th 2019

HC PROJEC

Istituto Nazionale di Fisica Nucleare

MBRDS1 test at CERN

Aperture fed in series quench history

Stefania Farinon

Istituto Nazionale di Fisica Nuclea

- all quenches but one in the same location: V2 A2-A3. A training effect is seen, but this location limiting the training prompted us to do further investigation
- the conclusion was that the conductor in the fifth block of coil A in aperture V2 (the same with short repaired) was seriously damaged (ex. several strands broken)
- it was decided to disconnect aperture V2 and feed aperture V1 only

Courtesy of F.Mangiarotti

Nominal/ultimate current adjustment

- Double aperture fed in series:
 - I_{nom}=12340 A, B₀=4.5 T
 - $I_{ult} = 13357 \text{ A}, B_{0 ult} = 4.82 \text{ T} (B_{0 ult} = B_0 \times 70/75)$
 - B_{SS}=7.42 T, I_{SS}=18468 A
 - Ioadline fraction: $f_{nom} = 66.8\%, f_{ult} = 72.3\%$

Stefania Farinon

- in D2 magnet, the two apertures cancel Bneak are calculated by an ANSYS 2D model each other the magnetic field, so at the same current the main field of a single aperture is larger we decided to keep more or less the same margins
- mechanics was designed to work up to ultimate, so reaching ultimate of double aperture configuration (13357 A) in single aperture mode was not an option

30000

25000

20000

15000

10000

5000

lc @ 1.9 K (A

B(T)

loadline B

– – loadline B*

operative

🗕 ultimate ●– ss

10

double aperture

- I_{nom}=12340 A, B₀=4.5 T
- I_{ult}=13357 A, B_{0 ult}=4.82 T
- B_{SS}=7.42 T, I_{SS}=18468 A
- loadline fraction:
 f_{nom}=66.8%, f_{ult}=72.3%

single aperture

- I_{nom}=11800 A, B₀=4.85 T
- I_{ult}=12780 A, B_{0 ult}=5.21 T
- B_{SS}=7.75 T, I_{SS}=17243 A
- loadline fraction: f_{nom}=68.4%, f_{ult}=74.1%

International review on D1 and D2 superconducting magnets for HL-LHC

CERN March 11th 2019

Aperture V1 (MBRDS1b) quench history

Stefania Farinon

Istituto Nazionale di Fisica Nuclear

- MBRDS1b has two quenches up to ultimate current
- The magnet held the ultimate current for more than one hour without quench.
- It also reached ultimate current without quench at 400 A/s

Courtesy of F.Mangiarotti

Conclusions

- The Short Model (MBRDS1) has been delivered to CERN on Jan. 17th and tested last month
 - aperture V2 exhibited a major damage (possible broken strands)
 - aperture V1, individually fed, performed very well reaching ultimate current in 2 quenches, confirming most of our mechanical choices
- Due to planning MBRDS1b will not be retested before the SM18 shutdown. Warm magnetic measurements will be performed soon (to check and validate ASG measurements)
- CERN decided not to give priority to cold magnetic measurements, so we have a fundamental piece of information presently missing for the prototype final design

Thank you for your attention

8th HL-LHC Collaboration Meeting

Nitronic 50 magnetic properties

·LHC PROJEC

Collaring [2/3]

- for both apertures the force needed for collaring was around 600 tons
- 2D FE analysis in nominal conditions (conductor parameters set by fitting stacking test measurements) foresee a collaring force around 300 tons/m, corresponding to a total of: 300×1.2 (lenght of straight section)+100 (estimated contribution of the ends)=450 tons
- 2D FE analysis is compatible with a collaring force of 600 tons if the coils are 0.48 mm bigger than nominal @ 70 MPa (measured coil dimensions @ 70 MPa were 0.3–0.4 mm larger than nominal)

Stefania Farinon International review on D1 and D2 superconducting magnets for HL-LHC

Non-conformity in aperture I:

electrical resistance measurements and surge tests

		I (A)	V (V)	R (mΩ)	Temp(°C)	R @ 20°C (mΩ)	R _{nominal} @ 20°C (mΩ)*	
electrical resistance	A01	9.97	1.373	137.7	23.3	135.9	132.4*	
Derore conaring	B02	9.95	1.372	137.8	23.3	136.0	132.4*	*electrical exits
								not included
		I (A)	V (V)	R (mΩ)	Temp(°C)	κω 20°C (mΩ)	(mΩ)*	
electrical resistance	A01	10.0	1.348	134.8	22.5	133.5**	132.4*	
arter collaring	B02	10.0	1.363	136.3	22.5	135	132.4*	

Non-conformity in aperture I: magnetic measurements of collared apertures

Magnetic mesurements on single aperture, straight section:

			b2	b3	b4	b5	b6	b7	b8	b9	b10	b11	b12	b13	b14	b15
	meas. @ 20 A		-200	224	-35.3	-8.0	-2.9	8.0	-2.1	-1.4	0.0	-0.3	-0.4	-0.4	-0.2	-0. 7
	simulations		-208	169	-37.2	0.7	-1.6	-0.05	-0.6	0.1	-0.09	-2.1	-1.9	-2.0	-1.0	-0.8
	meas. @ 20 A		187	184	36.4	7.6	4.4	1.4	-0.9	0.3	0.0	-1.5	3.4	-1.0	1.7	-0.8
II	meas. @ 100 A		198	182	36.3	8.6	4.0	0.8	-0.07	1.1	0.0	-1.5	2.2	-1.6	1.4	-0.06
	simulations		208	169	36.8	0.7	1.9	-0.05	0.4	0.1	0.1	-2.1	1.9	-2.0	1.1	-0.8
		a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12	a13	a14	a15
	meas. @ 20 A	0.6	41.3	-1.5	-27.3	2.4	12.4	0.9	-3.3	-0.2	0.0	-0.8	-0.3	0.4	1.0	0.9
	simulations	-1.9	0.2	-0.3	-0.01	-0.07	-0.05	-0.1	-0.04	-0.07	-0.02	-0.02	0.0	0.002	0.002	-0.003
	meas. @ 20 A	-1.8	-4.1	-6.5	-4. 7	0.8	3.3	2.2	0.2	-0.7	0.00	-1.9	0.5	-0.3	1.14	0.9
II	meas. @ 100 A	3.0	3.0	-3.3	-0.7	1.1	1.6	1.2	0.3	-0.2	0.00	-0.5	0.4	-0.3	0.6	0.08
	simulations	-1.1	0.1	0.2	0.03	-0.04	-0.05	-0.1	-0.04	-0.06	-0.01	-0.02	-0.002	0.0003	0.003	0.003

Stefania Farinon

Non-conformity in aperture I: comparison with the simulation of a short circuit

 Roxie simulation with a reduced current in the two turns of the fifth block of the upper pole (simulation of a short circuit accounts for large a_n even and b_n odd)

			b2	b3	b4	b5	b6
	measurements		-200	224	-35.3	-8.0	-2.9
	simulations		-208	169	-37.2	0.7	-1.6
	simulations with short circuit		-209	203	-39.3	-15.2	-0.9
		a1	a2	a3	a4	a5	a6
	measurements	0.6	41.3	-1.5	-27.3	2.4	12.4
I	simulations	-1.9	0.2	-0.3	-0.01	-0.07	-0.05
	simulations with short circuit	0.6	36.9	-1.8	-22.0	1.5	8.8

42

De-collaring of aperture I [1/3]

- the first aperture was de-collared with continuous monitoring of the resistance E\1 (4 wire contacts)
- in a first step the keys were removed from the connection side end only (tapering the transition collared/non collared) and the short disappeared (resistance from 7mΩ to 10 mΩ)
 this allowed to exactly locate the short in the fifth block of coil A01 on the connection side end most probably close to the exit

Stefania Farinon

side view of aperture I inside the press (partially de-collared)

International review on D1 and D2 superconducting magnets for HL-LHC CERN March 11th 2019

Re-collaring of aperture I [1/3]

 Coil protection and ground insulation sheets were not damaged by collaring and could be re-used

Re-collaring of aperture I [2/3]

- instead, quench heaters were visibly affected by collaring
- since we have no spare, we decided to replace them with the quench heaters of LHC (exactly the same dimensions...)
- the lack of the QHs on one of the coils did not preclude the test

Re-collaring of aperture I [2/2]

- Aperture I was finally recollared on October 10th
- The operation was been successfully completed in 45 min, continuously monitoring the resistance of the fifth block, which remained unchanged during the whole process.
- Electrical resistance and surge test are ok (phase displacement disappeared)

Istituto Nazionale di Fisica Nuclear

Stefania Farinon

	I (A)	V (V)	R (mΩ)	Temp(°C)	R @ 20°C (mΩ)	R _{nominal} @ 20°C (mΩ)*		
A01	10.0	1.370	137	22.9	135.4	132.4		
B02	10.0	1.368	136.8	22.9	135.3	132.4		

3D model with real coil end dimensions

Normal and skew components in the coil ends compared to FE calculations

Aperture 1	LC meas.	3D nominal	3D real	LOC meas.	3D nominal	3D real	Aperture 2	LC meas.	3D nominal	3D real	LOC meas.	3D nominal	3D real
C1 (gauss)	105.36	107.00	99.86	101.15	97.00	97.43	C1 (gauss)	104.28	107.00	100.10	99.98	97.00	97.63
b1	10000	10000	10000	10000	10000	10000	b1	10000	10000	10000	10000	10000	10000
b2	48.69	95.51	96.33	64.21	51.20	56.69	b2	-40.51	-95.52	-94.89	-60.09	-51.28	-55.61
b3	17.22	2.15	17.79	17.24	2.00	19.96	b3	17.70	2.18	21.46	16.97	2.02	22.21
b4	-7.51	-7.40	-7.49	-0.80	-2.35	-2.80	b4	11.90	7.41	7.78	2.88	2.35	2.91
b5	12.94	-11.72	-9.63	0.28	-5.75	-2.76	 b5	13.31	-11.73	-8.88	3.53	-5.75	-1.93
b6	-3.68	-1.29	-1.39	-4.29	1.51	-1.76	 b6	5.88	1.30	1.48	1.38	1.53	1.79
b7	-4.70	-5.33	-4.95	-8.12	-7.78	-7.80	 b7	-3.17	-5.35	-4.78	-7.46	-7.80	-7.58
b8	-0.83	-0.78	-0.82	-1.74	-0.90	-0.95	 b8	0.84	0.79	0.84	-0.51	0.91	0.97
b9	-1.35	-3.22	-3.29	-2.75	-3.47	-3.45	b9	-1.58	-3.24	-3.27	-2.76	-3.47	-3.44
a1	1.96	-46.10	-47.47	3.06	-0.15	-0.05	a1	-1.07	-46.15	-47.90	0.41	-1.21	-1.37
a2	17.32	-17.29	-13.36	8.81	0.19	2.18	a2	8.88	17.30	15.51	-4.04	0.19	0.75
a3	-31.69	0.35	-0.31	1.64	0.28	0.28	a3	-29.64	0.36	-0.63	3.09	-0.29	-0.36
a4	6.81	6.50	7.77	-0.09	0.00	0.75	a4	-1.99	-6.52	-6.05	0.35	0.00	0.63
a5	-4.22	-1.52	-1.57	1.43	-0.09	-0.12	a5	-5.79	-1.54	-1.61	0.33	0.09	0.10
a6	1.80	-1.84	-1.48	1.36	-0.06	0.01	a6	1.64	1.83	2.11	4.07	-0.07	0.04
a7	-0.16	-0.08	-0.10	0.49	-0.15	-0.15	a7	-0.77	-0.09	-0.11	0.11	0.15	0.16
a8	1.33	0.29	0.36	-0.04	0.04	-0.02	a8	0.36	-0.31	-0.29	0.98	-0.05	-0.05
a9	-1.15	0.31	0.33	-0.20	-0.09	-0.08	a9	-1.25	0.32	0.32	-0.42	0.08	0.07

