

D1 Cold Mass Design and Plans for the Series

Tatsushi NAKAMOTO (KEK) KEK On behalf of CERN-KEK Collaboration for D1 Development for HL-LHC

International review on D1 and D2 superconducting magnets for HL-LHC, CERN, 11-13 March, 2019

Japanese Contribution to HL-LHC: D1

magnets

- Beam separation dipole (D1) by KEK
 - Design study of D1 for HL-LHC within the framework of the CERN-KEK collaboration since 2011.
 - > 150 mm single aperture, 35 Tm (5.6 T x 6.3 m), Nb-Ti technology.
 - Development 2-m long model magnets (3 units) at KEK
- Deliverables for HL-LHC
 - 1 full-scale prototype cold mass (MBXFP)
 - 6 series cold masses (MBXF1-6)

7 Units x 7-m long cold masses D1 Cold Mass Design and Plans for the Series, T. Nakamoto, Mar. 12, 2019

MOU's

MOU's were signed on July 6, 2018 at MEXT, Tokyo, in presence of Dr. Isogai, Director General of Research Promotion Bureau, MEXT.

MEMORANDUM OF UNDERSTANDING FOR COLLABORATION IN THE HIGH LUMINOSITY LHC PROJECT AT CERN

EDMS 17655515 V1.0

BETWEEN: THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ("CERN"), an Intergovernmental Organization having its seat at Geneva, Switzerland, as the Host Organization of the High Luminosity LHC project ("HL-LHC Project");

AND: THE INSTITUTES, LABORATORIES, UNIVERSITIES AND THEIR FUNDING AGENCIES AND OTHER SIGNATORIES OF THIS MEMORANDUM OF UNDERSTANDING,

KN4074/TE/HL-LHC

ADDENDUM

to

THE MEMORANDUM OF UNDERSTANDING FOR COLLABORATION IN THE HIGH LUMINOSITY LHC PROJECT AT CERN

between

THE INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION,

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (KEK)

and

THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

concerning

Collaboration in the construction of the superconducting separation dipole magnet D1 in the framework of the High Luminosity upgrade for the LHC at CERN

2018

Overview of Production of D1 Prototype and Series

In-house development of 2-m model magnets so far.

Design, drawings, fabrication processes are available. Preparation for 7-m long magnets has started.

✓ Fine tuning of cross section will be applied to the prototype.

- Asset for 7-m magnets:
 - ✓ 7m long coil winding machine NEW!
 - ✓ 2 x 3.6m long hydraulic press
 - Fine-blanking dies for collar and yoke
 - ✓ 50% of stainless steel (NSSC130S) for the whole project
- Production of 7-m cold masses (prototype and series) by a manufacturer.
 - Involvement of Japanese firms already in model magnet development:
 > smooth technical transfer, accurate (lower) cost estimate.

Overview of Production of D1 Prototype and Series

- Very tight time frame for the prototype cold mass: delivery by Dec. 2020.
 - > Already 6 weeks delay for bidding process from the original schedule.
- Raw materials procured by KEK: timely provision to the manufacturer.
 - Due to some financial reasons, most of raw-materials for the magnet and the cold mass will be procured and provided by KEK.
 - Low cobalt iron and stainless steel, radiation resistant GFRP.
- Supplies from CERN:
 - insulated SC cables,
 - base laminates of QPH
 - HX tubes
 - insulated beam tubes
 - end-covers
 - > Extremity parts such as flare flanges (under discussion).

Agreement of money transfer using Mixed Flow Budget Code in preparation.

Open Tender

 Initial contract: multi-year contract covering prototype and 4 series cold masses.

* See schedule in *page 8*.

Bidding schedule

- Feb. 26: Call for tender
- Mar. 1: Explanatory meeting for tender
- April 19: Deadline of bidding

Technical Review

*CERN HSE will cover QMS for PV.

May 24: Bid opening

Next contracts for last 2 series cold masses are expected in JFY 2021 and 2022.

Items of Technical Review for Open Tender

- Bidder's own Technical Specification based on the Technical Specification provided by KEK
 Proof of technical capability to produce cos-θ type superconducting accelerator magnets with Rutherford cable.
- 3. Proof of technical capability to produce large-scale superconducting magnets with a stored energy of 1MJ or larger and with coil internal stress of 100MPa or larger.
- 4. Proof of technical capability to produce superconducting magnets with sufficient accuracy in fabrication and assembly processes.
- 5. *Proof of technical capability to produce low temperature pressure vessels.
 - The bidder has to submit proof documents of technical capability to produce the helium pressure vessel (design pressure 2.0MPa_Abs, operating temperature 1.9K) specified in the Technical Specification provided by KEK in compliance with 2014/68/EU Pressure Equipment Directive (PED) with harmonized EN-13445:2014 code or nearly similar construction standard of ASME Boiler and Pressure Vessel Code Section VIII Division 2 with compensatory measures.
- 6. *Quality Management System for production of superconducting magnet cold masses specified by this Technical Specification
 - The bidder has to submit Quality Management System based on ISO 9001 or more strict standard, and preliminary Quality Plan specified in this Technical Specification. In case of subcontractors involved, the bidder also has to submit the documents describing subcontractor's name, technical capability, task and responsibility in the production.

*Items reviewed by KEK & CERN-HSE

- Prototype fabrication has to start before cold test of 3rd Model at Sep. 2019.
- Production of Series 1 will start after the vertical test of Prototype.
- Foreseen milestones: delivery date of cold masses (re-baselined after open-tender)
 - > MBXFP (for string test): Nov. 2020.
 - ➤ MBXF1-4 (for the HL-LHC machine): April 2023.
 - ➢ MBXF1-6 (all): June 2024.

*Practical schedule will be fixed after discussion with successful bidder.

D1 Cold Mass: Overview

Design Parameters

- Design pressure and operating temperature: 2.0 MPa, 1.9 K
- Pressure test at 2.5 MPa
- He leak rate below 1 x 10⁻¹⁰ Pa m³/s
- Cold mass length and distance between saddles: 7370 mm and 3900 mm
- The detail of extremities designed by CERN
 - Two Hell HX pipes in line with MQXF (X1, X2)
 - Two Hell conduction lines (L1, L2)
 - Bus bars interconnection line (MN) D1 Cold Mass Design and Plans for the Series, T. Nakamoto, Mar. 12, 2019

Flow of D1 Cold Mass Production

PV: Pressure Vessel

5 installation of tubes (RT HYT)

D1 magnet after process "4" for vertical cold test at KEK

Flow of D1 Cold Mass Production

Manufacturer

D1 Cold Mass Design and Plans for the Series, T. Nakamoto, Mar. 12, 2019

D1 Cold Mass: Pressure Vessel

D1 Cold Mass: Structural Design Analysis

"HL-LHC Superconducting Magnets Compliance with Pressure Equipment Directive (PED 2014/68/EU) Essential Safety Requirements" (EDMS 1891856, Rev. 4.1)

- Baseline: 2014/68/EU Pressure Equipment Directive (PED) Essential Safetv Requirements (ESR) and harmonized EN 13445 codes
- Alternative: "ASME Boiler and Pressure Vessel Code Section VIII Division 2" in compliance with PED << KEK's baseline
- Staged design assessment by HSE
 - For "main body"
 - ✓ Meeting w/ HSE for preliminary design assessment on Feb. 6, 2019.
 - https://edms.cern.ch/document/2085476/1 (see next pages)
 - ✓ Soundness of proposed design, choice of raw materials, welding design and procedure of inspection were confirmed. Final design report is now in preparation.
 - Suggestions for inspection of raw materials (JIS SUS304L and welding) consumables)
 - Particular Material Appraisal (PMA) with Charpy test at 77K & 4K, and UT
 - For "the whole cold mass" including extremities.
 - "Pipes, End-cover and Extremity" design by CERN. To be released soon...
 - \checkmark KEK will start the total design analysis after receiving the design outcome from CERN.
 - Need design assessment by September 2019 at latest.

Policy of Structural Design of D1 Cold Mass: "Main Body"

- A) D1 pressure vessel design is obeyed <u>ASME Sec. VIII Div.2</u> and <u>Compliance</u> <u>documents supplied by CERN</u>.
- B) Structural analysis for the cold mass skin is obeyed "Elastic Stress Analysis Method" in <u>"DBA" in ASME Section VIII Div.2 Part 5.</u>
- C) The shell cap design is proceeded with "FEM Analysis" and "Experimental method per EN 13445-3:2014 Annex T" and "Hydrotest" under safety factor 5 with respect to service pressure".
- D) Welding design of the pressure vessel is obeyed "ASME Sec. VIII Div.2 Part 4".
- E) Material parameters are referred to "ASME Sec. II PART D (Metric)".
- F) Welding rules such as WPS and WPQT are created and referred to "<u>ASME Sec.</u> <u>IX Welding and Brazing and Fusing Qualifications</u>".
- G) "Nondestructive Examination (NDT)" are obeyed "<u>ASME Sec. V + Sec. VIII Div.2</u> <u>Part 7+EN code</u>", but <u>the qualification of inspectors are certified by ISO 9712,</u> <u>not certified by ASME</u>.

See detail in Appendix

D1 Cold Mass Design and Plans for the Series, T. Nakamoto, Mar. 12, 2019

Applied Code for Structural Design: "Main Body"

PV Parts	ID	Code	Design Method	Remark 1	Remark 2
Shell End-dome	1	ASME BPVC Sec. VIII Div.2 Part 5		Welding tensile stress by FEM analysis	
				Peak stress on shell cap by FEM analysis	
Shell-cap	2	ASME BPVC Sec. VIII Div.2		"Experimental method per EN 13445-3:2014 Annex	
	Ŭ	Part 4		T and "Hydrotest" under safety factor 5 with	
				respect to service pressure"	
End-ring	3	ASME BPVC Sec. VIII Div.2 Part 4	Design By Analysis		
Support saddle	4				
End-cover	5				
Cold bore, HX pipe and extremity		Design by CERN		Design outcome and WPS	"Experimental method per EN 13445-3:2014 Annex T" and
Capillary tube and end-box	6			will be provided by CERN.	"Hydrotest" under safety factor 5 with respect to service pressure" for flare flange weld.

Results of Stress validation for LC1: "Main Body"

Load Case 1 (LC1): **Design load (=Operation load)** Design pressure : P = 2.0 MPa Axial force to end-ring: $F = F_a + F_b = 70 \text{ kN} + 30 \text{ kN}$ Cold-mass weight: W = 140 kNOperation temperature : 1.9 K With electric magnetic force : Full excitation

Stress validation for LC 1

Load case 1 (LC 1)							
		σ_{i-axis} (MPa)					
	1 (<i>r</i>)	2 (θ)	3(<i>z</i>)	(MPa)		\frown	
$P_m = P_m^{(1)} + P_m^{(2)} + P_m^{(3)}$	-2.0	56.0	38.1	51.4	Р _т < S (115МРа)	Good	
PL	0.0	0.0	5.9	5.9	Р _L < S _{PL} (172.5MPa)	Good	
$P_L + P_b$	0.0	0.0	5.9	5.9	$P_L + P_b < S_{PL} (172.5MPa)$	Good	
$Q_m = Q_m^{(1)} + Q_m^{(2)}$	7.0	318	0.0	315	-	-	
$P_L + P_b + Q_m$	7.0	318	5.9	312	$P_L + P_b + Q_m < S_{PS} (345MPa)$	Good	

Results of Stress validation for LC2: "Main Body"

Load Case 2 (LC2): **Test load** Test pressure : P = 2.5 MPa Axial force to end-ring: $F = F_a = 70$ kN Cold-mass weight : W = 140 kN Test temperature: Room temperature (300 K) Without electric magnetic force

Stress validation for LC 2

Load case 2 (LC 2)							
	σ_{i-axis} (MPa)			σ_{eq}			
	1 (<i>r</i>)	2 (θ)	3(<i>z</i>)	(MPa)		\bigcap	
$P_m = P_m^{(1)} + P_m^{(2)} + P_m^{(3)}$	-2.5	70	44.6	63.7	P _m < S (115MPa)	Good	
P_L	0.0	0.0	5.9	5.9	P _L < S _{PL} (172.5MPa)	Good	
$P_L + P_b$	0.0	0.0	5.9	5.9	$P_L + P_b < S_{PL} (172.5MPa)$	Good	
$Q_m = Q_m^{(1)} + Q_m^{(2)}$	0.0	125	0.0	125	-	-	
$P_L + P_b + Q_m$	0.0	125	5.9	122	$P_L + P_b + Q_m < S_{PS}$ (345MPa)	Good	

Structural design of the *Main Body* of D1 cold mass was validated.

Main Busbar and Expansion Loop

- SC lead shunted with $1.5 \times 15.1 \text{ mm}^2$ copper strip.
 - Quench performance of the superconducting busbar powering the HL-LHC D1 circuit (EDMS 2061856)
- "Expansion loop" to accommodate thermal shrinkage of D1 cold mass during cool-down
 - Displacement of 20 mm, allowable max. force of 200N
 - 500 mm long end-dome providing sufficient space.
 - Engineering study will start soon with making a mock-up.

Instrumentation

Fiducial planes (4) for CERN at both sides

- Alignment feature on the shell: 8 x 4 holes for markers (like MQXA)
 - Local mechanical (magnetic) center determined by yoke shoulders.
 - > 4 markers in cross section: top & bottom, left & right

D1 Cold Mass: Alignment Feature

Alignment markers

D.

- > 8 longitudinal positions
- Straightness of the cold mass can be surveyed.
- Provision of mechanical reference for SSW measurement.
- Mechanical (magnetic) axis transferred to fiducials on
 end-covers. D1 Cold Mass Design and Plans for the Series, T. Nakamoto, Mar. 12, 2019

Ē

0

(

Ø

SSW, MFM and Optical Survey for D1

SSW system of QCS magnet for SuperKEKB

- Magnetic axis and field angle with respect to fiducials will be determined by MFM with SSW (Single Stretched Wire) and rotating coil in horizontal position.
- The measurement system was already developed for SuperKEKB QCS magnet and is now available for the D1.
 - The dedicated team joined the HL-LHC D1 project.
 - Preparation of measurement for the 7m long prototype cold mass is underway in Nikko-Exp. Hall at KEK.
 - Laser-tracker will be used for the survey of the D1 cold mass.

Readiness of Vertical Cold Test Stand

- V-cryostat manufactured by Toshiba (2000)
 - 19 LHC-MQXA (7m) & 32 J-PARC SCFM (4m) tested.
- Operating Temp.: 4.4K to 1.9K
- Capacity

- whole bath: 9020 mm deep.
- 1.9 K bath: 7524 mm deep, 700 mm in a diameter.
- He Cryogenic Plants with Hell sub-cooler
 - Dedicated liquefier at 160 L/h (+ 350 L/h)
 - $\Delta T=30$ mK at 80 W, 1.9 K. 4 parallel pump lines.
- 15 kA, 15 V Power Converter (1993)
 - Thyristor switch for prompt shutoff.
 - Dump resistor: 0, 12.5, 25, 50, 75 and 100 mΩ.
 - Quench detectors
 - 2 x V_balance + 2 x V_total
 - External 15 kA DCCT
- New header for the D1 (MBXF)
 - Manufactured in 2014
 - Anti-cryostat for field measurement: O.D. 141.3 mm
 - Quench antennas: 11 arrays for 7 m long magnet
 - Feedthrough: 48 poles x 10
 - HVWL: present limit 1.8 kV for QPH line. Improved up to 2.3kV
 - 15 kA Current Leads

Already operated for the cold tests of the 2m models

HILUMI HI-LHC PROJECT MFM system and DAQ are mostly ready. Some improvement needs for Quench Antenna signals. New rotating coils for 7m long magnet will be developed.

Summary

- KEK will deliver to HL-LHC with
 - > 1 full-scale prototype cold mass (MBXFP)
 - 6 series cold masses (MBXF1-6)
- Open tender for production of D1 cold masses is underway and successful bidder will be determined at the 24th of May, 2019.
- Very tight schedule to deliver Prototype by Dec. 2020.
- Structural design analysis of "Main Body" of D1 cold mass was validated by CERN-HSE. Final report is in preparation.
- New horizontal MFM bench and vertical cold test stand are being arranged at KEK premise.
- Engineering for cold mass was started in collaboration with CERN.

Appendix

D1 Cold Mass Design and Plans for the Series, T. Nakamötö, Mär

-27

Material Map

Stress at Shell-Cap

Jan. 10,2019 H.Y.

Example of FEM analysis result for shell cap (3D model) under 2 MPa. Equivalent stress of shell cap is around 73 MPa in the figure. This value is lower than allowable stress, S = 115 MPa.

Outline of Design Parameters of the pressure vessel

Symbol	Value	Description
D	0.57 m	Outer diameter of the pressure vessel
t	0.01 m	Thickness of half shell
L	7.13 m	Length of the pressure vessel
Р	2.0 MPa	Design pressure (quench regime)
P _{test}	2.5 MPa	Test pressure
Т	1.9 K	Operating temperature
W	140 KN	Weight of cold-mass

Parameters for DBA: "Main Body"

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Value	Unit	Description
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>r</i> ₁	0.275	m	Inner radius of the pressure vessel
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>r</i> ₂	0.285	m	Outer radius of the pressure vessel
t0.01mThickness of the pressure vesselL7.13mLength of the pressure vesselP2.0MPaDesign pressure (quench regime) P_{test} 2.5MPaTest pressureT1.9 KKOperating temperature F_a 70KNPre-axial loads on end ring (given by experiment) F_b 30kNElectromagnetic axial loads on end ring (given by experiment)W140kNWeight of cold-mass A_{shell} 0.0173m²Cross-sectional area of shell A_{saddle} 0.12m²Cross-sectional area of support saddle E_{ss} 193GPaYoung's modulus at room temperature $a_{ss}\Delta T$ 3×10^{-3} Integrated thermal contraction of austenitic stainless steel - between room temperature and liquid helium 1.9 KM 1.27×10^7 N·mmBending momentZ 2.42×10^6 mm³Section modulus of shell as pipe shape	r	0.275	m	<i>r</i> = <i>r</i> ₁
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t	0.01	m	Thickness of the pressure vessel
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L	7.13	m	Length of the pressure vessel
$\begin{array}{ c c c c c c } \hline P_{test} & 2.5 & \text{MPa} & \text{Test pressure} \\ \hline T & 1.9 \text{ K} & \text{K} & \text{Operating temperature} \\ \hline F_a & 70 & \text{KN} & \text{Pre-axial loads on end ring (given by experiment)} \\ \hline F_b & 30 & \text{KN} & \text{Electromagnetic axial loads on end ring} \\ \hline W & 140 & \text{KN} & \text{Weight of cold-mass} \\ \hline A_{shell} & 0.0173 & \text{m}^2 & \text{Cross-sectional area of shell} \\ \hline A_{saddle} & 0.12 & \text{m}^2 & \text{Cross-sectional area of support saddle} \\ \hline E_{ss} & 193 & \text{GPa} & \text{Young's modulus at room temperature} \\ \hline \alpha_{ss}\Delta T & 3 \times 10^{-3} & & & & & & \\ \hline ntegrated thermal contraction of austenitic stainless steel - \\ \hline between room temperature and liquid helium 1.9 \text{ K} \\ \hline \alpha_{lc}\Delta T & 2 \times 10^{-3} & & & & & & \\ \hline M & 1.27 \times 10^7 & \text{N-mm} & & & & & & \\ \hline m & & & & & & & & \\ \hline \end{array}$	Р	2.0	MPa	Design pressure (quench regime)
T1.9 KKOperating temperature F_a 70KNPre-axial loads on end ring (given by experiment) F_b 30kNElectromagnetic axial loads on end ring (given by experiment)W140kNWeight of cold-mass A_{shell} 0.0173m²Cross-sectional area of shell A_{saddle} 0.12m²Cross-sectional area of support saddle E_{ss} 193GPaYoung's modulus at room temperature $\alpha_{ss}\Delta T$ 3×10^{-3} Integrated thermal contraction of austenitic stainless steel - between room temperature and liquid helium 1.9 KM 1.27×10^7 N·mmBending momentZ 2.42×10^6 mm³Section modulus of shell as pipe shape	P _{test}	2.5	MPa	Test pressure
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Т	1.9 K	К	Operating temperature
F_b 30KNElectromagnetic axial loads on end ring (given by experiment)W140KNWeight of cold-mass A_{shell} 0.0173m²Cross-sectional area of shell A_{saddle} 0.12m²Cross-sectional area of support saddle E_{ss} 193GPaYoung's modulus at room temperature $\alpha_{ss}\Delta T$ 3×10^{-3} Integrated thermal contraction of austenitic stainless steel - between room temperature and liquid helium 1.9 K $\alpha_{lc}\Delta T$ 2×10^{-3} Integrated thermal contraction of low carbon steel-between room temperature and liquid helium 1.9 KM 1.27×10^7 N·mmBending momentZ 2.42×10^6 mm³Section modulus of shell as pipe shape	F _a	70	kN	Pre-axial loads on end ring (given by experiment)
W140KNWeight of cold-mass A_{shell} 0.0173m²Cross-sectional area of shell A_{saddle} 0.12m²Cross-sectional area of support saddle E_{ss} 193GPaYoung's modulus at room temperature $\alpha_{ss}\Delta T$ 3 × 10-3Integrated thermal contraction of austenitic stainless steel - between room temperature and liquid helium 1.9 K $\alpha_{lc}\Delta T$ 2 × 10-3Integrated thermal contraction of low carbon steel-between room temperature and liquid helium 1.9 KM1.27 × 107N·mmBending momentZ2.42 × 106mm³Section modulus of shell as pipe shape	F _b	30	kN	Electromagnetic axial loads on end ring (given by experiment)
A_{shell} 0.0173 m^2 Cross-sectional area of shell A_{saddle} 0.12 m^2 Cross-sectional area of support saddle E_{ss} 193GPaYoung's modulus at room temperature $\alpha_{ss}\Delta T$ 3×10^{-3} Integrated thermal contraction of austenitic stainless steel - between room temperature and liquid helium 1.9 K $\alpha_{lc}\Delta T$ 2×10^{-3} Integrated thermal contraction of low carbon steel-between room temperature and liquid helium 1.9 K M 1.27×10^7 N·mmBending moment Z 2.42×10^6 mm ³ Section modulus of shell as pipe shape	W	140	kN	Weight of cold-mass
$ \begin{array}{ c c c c c } \hline A_{saddle} & 0.12 & m^2 & Cross-sectional area of support saddle \\ \hline E_{ss} & 193 & GPa & Young's modulus at room temperature \\ \hline \alpha_{ss}\Delta T & 3 \times 10^{-3} & Integrated thermal contraction of austenitic stainless steel - between room temperature and liquid helium 1.9 K \\ \hline \alpha_{lc}\Delta T & 2 \times 10^{-3} & Integrated thermal contraction of low carbon steel-between room temperature and liquid helium 1.9 K \\ \hline M & 1.27 \times 10^7 & N\cdotmm & Bending moment \\ \hline Z & 2.42 \times 10^6 & mm^3 & Section modulus of shell as pipe shape \\ \hline \end{array} $	A _{shell}	0.0173	m²	Cross-sectional area of shell
E_{ss} 193GPaYoung's modulus at room temperature $\alpha_{ss}\Delta T$ 3×10^{-3} Integrated thermal contraction of austenitic stainless steel - between room temperature and liquid helium 1.9 K $\alpha_{lc}\Delta T$ 2×10^{-3} Integrated thermal contraction of low carbon steel-between room temperature and liquid helium 1.9 K M 1.27×10^7 N·mm Z 2.42×10^6 mm ³ Section modulus of shell as pipe shape	A _{saddle}	0.12	m²	Cross-sectional area of support saddle
$\alpha_{ss}\Delta T$ 3×10^{-3} Integrated thermal contraction of austenitic stainless steel - between room temperature and liquid helium 1.9 K $\alpha_{lc}\Delta T$ 2×10^{-3} Integrated thermal contraction of low carbon steel-between room temperature and liquid helium 1.9 K M 1.27×10^7 N·mm Z 2.42×10^6 mm ³ Section modulus of shell as pipe shape	E _{ss}	193	GPa	Young's modulus at room temperature
$\alpha_{lc}\Delta T$ 2×10^{-3} Integrated thermal contraction of low carbon steel-between room temperature and liquid helium 1.9 KM 1.27×10^7 N·mmBending momentZ 2.42×10^6 mm³Section modulus of shell as pipe shape	$\alpha_{ss}\Delta T$	3 × 10 ⁻³		Integrated thermal contraction of austenitic stainless steel - between room temperature and liquid helium 1.9 K
M1.27 × 107N·mmBending momentZ2.42 × 106mm³Section modulus of shell as pipe shape	$\alpha_{lc}\Delta T$	2 × 10 ⁻³		Integrated thermal contraction of low carbon steel-between room temperature and liquid helium 1.9 K
Z 2.42 x 10 ⁶ mm ³ Section modulus of shell as pipe shape	М	1.27 × 10 ⁷	N∙mm	Bending moment
	Z	2.42 × 10 ⁶	mm ³	Section modulus of shell as pipe shape

Material Properties: "Main Body"

Physical property numbers of S and S_y for SA-240/AISI304L are determined in "ASME BPVC Sec. VIII Div.2 Part 3&Part 5 :2017"

"ASME BPVC Sec. II D Table 5A Maximum Allowable Stress Values S for Ferrous Materials"

Mechanical properties of SA-240/AISI304L

Symbol	Value	Unit	Definition
S	115	MPa	$S = \frac{2}{3}S_y$
Sy	170	MPa	minimum specified yield strength
S _{PL}	172.5	MPa	$S_{PL} = 1.5S$
S _{Ps}	345	MPa	$S_{Ps} = 3S$
-	485	MPa	minimum tensile strength

&

Analysis method according to ASME Sec. VIII Div.2 Part 5 Elastic Stress Analysis Method was selected in ASME BPVC Sec. VIII Div. 2 Part 5 5.2.1.1 Design by analysis requirement as DBA. A quantity known as equivalent stress, S_e , is computed at location in the component and compared to an allowable value of equivalent stress. The equivalent stress is equal to the von Mises equivalent stress, σ_e , given by the following.

$$S_e = \sigma_e = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{0.5}$$

Stress categories and limitation of equivalent stresses

Symbol	Description	Symbol	Description			
		$P_{m}^{(1)}$	Stress by the internal pressure			
P	General primary	General primary $P_m^{(2)}$ Stress by the bending moment at support saddle				
' m	membrane stress	P _m ⁽³⁾	Stress by the axial force to end-ring by pre-stress (+electric magnetic force) in the SC coil			
P _L	Local primary membrane stress	$P_{L}^{(1)}$	$P_m^{(2)}$ + membrane stress from support saddle			
P _b	Primary bending stress	P_b	Not applicable: $P_b = 0$			
0	Secondary	<i>Q_m</i> ⁽¹⁾	Stress by the thermal shrinkage			
\mathbf{Q}_m	membrane stress	Q _m ⁽²⁾	Stress by the welding shrinkage			
σ_e	Equivalent stress range					

5.15 FIGURES

Limits of equivalent stress

Applied Inspection for Materials: "Main Body"

PV Parts	Grade	Remark 1	Remark 2	
Shell End-dome		Material Certificate (EN 10204:2004 Type 3.1) stencil Co: < 0.1%		
Shell-cap	JIS G 4304:2015 SUS304L	Material Certificate (EN 10204:2004 Type 3.1) stencil Co: < 0.1%	Chemical analysis, Yield strength 0.2Rp & 1.0Rp, Tensile Strength, Elongation, Hardness, Charpy test at 77K and 4.2K, UT.	
End-ring	JIS G 3214:2009 SUSF304L	Material Certificate (EN 10204:2004 Type 3.1) stencil Co: < 0.1%		
End-cover	EN 1.4429 316LN	Material Certificate (EN 10204:2004 Type 3.1) stencil Co: < 0.1%	Material Certificate (EN 10204:2004 Type 3.1)	
Support Saddle	JIS G 3214:2009 SUSF304L	Material Certificate (EN 10204:2004 Type 3.1) stencil Co: < 0.1%	Chemical analysis, Yield strength 0.2Rp & 1.0Rp, Tensile Strength, Elongation, Hardness, Charpy test at 77K and 4.2K, UT.	
Cold bore, HX pipe and extremity	AISI316LN, 316L, OFC	HX Pipe Cold bore pipe extension Flare flange	Material Certificate (EN 10204:2004 Type 3.1)	
Capillary tube and end-box	AISI316L, 316LN	Capillary tube end-box	Material Certificate (EN 10204:2004 Type 3.1)	
Welding rod	ASME BPVC Sec. VIII Div.2 Part 3 ASME BPVC Sec. II-C ASME BPVC Sec. IX	Candidate: SFA 5.9/AWS A5.9:ER308L SFA 5.9/AWS A5.9:ER308L SFA 5.9/AWS A5.9:ER316LN	Material Certificate (EN 10204:2004 Type 2. 2). 3 < FN < 8.	
Insert ring	ASME BPVC Sec. VIII Div.2 Part 3 ASME BPVC Sec. II-C ASME BPVC Sec. IX	Candidate: SFA 5.9/AWS A5.9:ER308L	Material Certificate (EN 10204:2004 Type 2. 2). 3 < FN < 8.	

Supplied by CERN

Welding Map: "Main Body"

Applied Code for Welding: "Main Body"

welding part	welding part	ID	Code	Structure	Joint Type and Joint Category	Remark 1	Remark 2
Shell, End-dome	Shell, End-dome	Δ		longitudinal welding (single-V	Joint Type:1		full penetration welding
SUS 304L	SUS 304L	~		groove)	Joint Category:A		with insert-ring
Shell, End-dome	End-ring	в		circumferential welding (single-V	Joint Type:1		single side full penetration
SUS 304L	SUS F304L			groove)	Joint Category:B		welding
Shell-cap	Shell		ASME BPVC	circumferential welding (groove)	Joint Type:9		single side full penetration
SUS 304L	SUS 304L	Ŭ	Sec.VIII Div.2 Part		Joint Category:D		welding
End-dome	End-cover	П	4-4.2 ASME	circumferential welding (single-V	Joint Type:1		single side full penetration
SUS 304L	316LN		BPVC Sec.IX	groove)	Joint Category:C		welding
End-ring	End-cover	F		circumferential welding (single-V	Joint Type:1		single side full penetration
SUS F304L	316LN	-		groove)	Joint Category:C		welding
Shell	Support saddle	F		fillet welding	Joint Type:-		
SUS 304L	SUS F304L	'			Joint Category:E		
extension pipe	End-cover	G		butt welding	Joint Type:1		
(316LN or 316L)	316LN	Ŭ			Joint Category:D		
extension pipe	Flare flange	н		lin welding	Joint Type:-		
(316LN or 316L)	(316LN or 316L)				Joint Category:C		
sleeve	Flare flange			fillet welding	Joint Type:-	WPS, WPQT,	
(316LN or 316L)	(316LN or 316L)	'			Joint Category:C	Qualification of	
sleeve	End-flange			circumferential welding (single-V	Joint Type:-	welder	
(316LN or 316L)	(316LN or 316L)	J		groove)	Joint Category:C		
Flare flange	End-cover	ĸ		lin welding	Joint Type:-		
(316LN or 316L)	316LN	Ň			Joint Category:D		
Flare flange	HX joint		WPS provded by	fillet welding	Joint Type:-		
(316LN or 316L)	(316LN or 316L)		CERN		Joint Category:C		
Flare flange	End-flange	м	OLIN	socket, lip weld	Joint Type:-		
(316LN or 316L)	(316LN or 316L)	101		ing	Joint Category:C		
Flare flange	End-flange	N		fillet welding	Joint Type:-		
(316LN or 316L)	(316LN or 316L)				Joint Category:C		
Tees	End-cover			butt welding	Joint Type:1		
(316LN or 316L)	316LN	0			Joint Category:D		
Tees, end-box	End-flange			hand and helf a se	Joint Type:1		
(316LN or 316L)	(316LN or 316L)	Р		butt weiding	Joint Category:C		
Capilary tube	End-flange, End-box				Joint Type:-		
316L	(316LN or 316L)	Q		socket welding	Joint Category: C		

Applied Inspection for Welding (1) : "Main Body"

ID	Structure	Code	Inspection condition	Remark 1	Remark 2
Δ	longitudinal welding (single-V groove)			Examination Group:1b	
				RT·100%	
				Examination Group:1b	
С	circumferential welding (groove)			Weld joint effciency:1.0	
				UT:10%	
				Examination Group:1b	Ouglification of
В	circumferential welding (single-V groove)			Weld joint effciency:1.0	welder
				UT:10%	DT >> See (1)
				Examination Group:1b	
D	circumferential welding (single-V groove)			Weld joint effciency:1.0	
		ASME BPVC Sec. V		UT:10%	
_		ASME BPVC Sec.	NDT >> See (2)	Examination Group:1b	
E	circumferential weiding (single-v groove)	VIII Div.2 Part 7			
				U1:10%	
-	fillet wolding			Examination Group. Ib	
				PT or LIT:10 %	
G	butt welding				
H.K	lip welding				
I.L.N	fillet welding				WPS, WPQT,
Ĵ	circumferential welding (single-V groove)			Examination Group:1b	Qualification of
М	socket, lip welding			Weld joint effciency:1.0	welder.
0	butt welding	1		R1:100%	DT >> See (1)
Р	butt welding				
Q	socket welding				

Applied Inspection for Welding (2) : "Main Body"

		Inspection	Code and Standard	Remark	Approval	Applied standard at CERN
		Transverse tensile test	ASME sec. IX OW-150	1 required		EN 4136
						EN10002-1
		Longitudinal tensile test within the weld bead	EN 5178	EN 5178 1 required		EN 5178
			ASME sec. VIII Div.2,Part	4 2 K and 77 K (3 required in		ISO 17638-1
	Destructive	Charpy V-Notch test	3,3.11.7 Refer to SA-370 or JIS Z 2242 (ISO148-1)	heat affected zone, 3 required in weld material)	Review	EN ISO 148-1
(1)		Bending Test	ASME sec. IX, QW-160	1:Normal,1:Root	and	EN910, ISO7438
. ,	test (DT)	Macrography	ASME sec. IX, QW-184	1 required	approval	EN 13639
		Macrograph	ASTM E3	1 required	by CERN HSE	EN 13639
		Magnetic permeability	ASTM A342 Method 5	1 required		ASTM A342 Method 5
		Fracture toughness	ASTM E1820 (or eq. ASME sec. VIII Div.2 Part 3)	RT,4.2K (both heat affected zone, weld material. 1 Long., 1 Trans. each at each temperature) Minimum 8 samples		ASTM E399 ASTM E813-89 ASTM E1820 (or eq. ASME sec. VIII Div.2 Part 3)
		Inspection	Code and Standard	Remark	Approval	Applied standard at CERN
		Qualification	SO 9712			EN-ISO 9712
(2)	Non- destructive test (NDT)	E Q ir p	N-ISO 17637:2016, 5 Personal ualification, "an appropriate level on the relevant industry sector as a ersonal qualification"	100% of welded part	Review and approval by CERN	EN-ISO 17637
		RT A	SME BPVC Sec.V	100% of logntudinal welding	HSE	NA
		UT A	SME BPVC Sec.V	10% of circumferential welding		NA

4.5 Stress by weld shrinkage

FEM analysis for weld shrinkage (2D model)

Result of FEM Analysis for Stress Distribution by weld shrinkage

