SC Magnet System for High Luminosity LHC Upgrade in View of Radiation Issues

Tatsushi NAKAMOTO

Cryogenics Science Center, KEK

Reference

- LHC Performance Workshop (Chamonix 2017) https://indico.cern.ch/event/580313/
- 129th LHCC Meeting (open session) https://indico.cern.ch/event/609813/
- HL-LHC Collaboration Meeting 2016

https://espace.cern.ch/HiLumi/2016/SitePages/Home.aspx

Special thanks to;

- F. Cerutti (CERN) and N. Mokhov (FNAL) for particle transport simulations for the HL-LHC project.
- R. van Weelderen (CERN) for HeII cooling calculation.

Overview: LHC

- <u>Large Hadron Collider at CERN</u>
- Circumference: 26.7 km
- Proton Beam Injection Energy: 450 GeV
- p + p Collision Energy:
 - 4 + 4 TeV (2012)

Splice consolidation work in LS1 (2013-2014)

- 6.5 + 6.5 TeV (2015)
- 7 + 7 TeV (design)
- Nominal Luminosity: 1 x 10³⁴ cm⁻² sec⁻¹
- Superconducting Technology and Cryogenics
 - 2 in 1 main dipole at 8.3T: 1232 magnets
 - Cooled at 1.9 K by 100 tons of superfluid Cleaning helium
 - Total weight of cold mass: 35,000 ton
 - Electrical power of 40 MW for cryogenics plant
- Construction budget: > 5000 MCHF

2017/4/20

Cryogenics Limit for IT Quads.

IT Quads. for final beam focusing

K. Brodzinski

Due to global stability issues and related mechanical problems, the bayonet heat exchanger diameter was modified in 2007 reducing thermal performance of the system.

> Recent calibration test for IT R1 cold mass heating showed that maximum dynamin heat load is **250 W**.

Peak luminosity of LHC will be limited around 1.75 e³⁴ cm⁻² s⁻¹ for 6.5 TeV due to insufficient cooling capability at IT Quads.

2017/4/20

Limit of IT Quads. due to Radiation Damages

LHC / HL-LHC Plan

HL-LHC Baseline Parameters $L = g_r \frac{N_b^2 n_b f_{rev}}{4\rho e b^*} R$

		A D P D
Parameter	Nominal LHC	25ns HL-LHC $^{+DC_nD}$
Bunch population N _b [10 ¹¹]	1.15	2.2
Number of bunches n _b	2808	2747
Beam current [A]	0.58	1.09
Crossing angle [mrad]	285	590
Beam separation [σ]	9.9	12.5
Minimum β^* [m]	0.55	0.15
Normalized emittance ϵ_n [mm]	3.75	2.5
ε _L [eVs]	2.5	2.5
r.m.s. bunch length [m]	0.0755	0.0755
Geometric loss factor R (w/o / w/ CC)	0.836 / (0.981)	0.305 / <mark>0.829</mark>
Virtual Luminosity (w/o / w/ CC) [10 ³⁴ cm ⁻² s ⁻¹]	1.2 / (1.2)	6.73 / <mark>19.54</mark>
Max. Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	5.00
Levelled Pile-up/Pile-up density [evt. / evt./mm]	27/0.2	140/1.2
Integrated luminosity [fb ⁻¹ /year]	45	260

Actions;

- LHC injectors upgrade (for N_b , n_b , ϵ_n)
- New insertion magnets with large apertures & higher fields (for β^{*})
- SC crab-cavities first-ever in the proton collider (for R)

2017/4/20

- Insertion regions for IP1 & 5 will be totally replaced for upgrade.
- New magnet system (IT Quad., D1, Correctors) 70mm → 150mm
- New Technology: Nb₃Sn Quad., SC Crab-cavities

L. Rossi

IR Matching Section at IP for HL-LHC

L. Rossi R. Calaga

Works around the LHC Ring

Cryo@P1&P5 2 x 18 kW @ 4.5 K (3kW@1.9K) (!!)

Cryo@P4 6 kW @ 4.5 K

"High Luminosity"

Significant increase of beam stored energy, heat loads, radiation

- 11 T Nb₃Sn Dipole and LEN collimator
- New service tunnel: "Double Decker"
- SC Link (MgB₂), R2E,
- **New cryogenics plants**
- **Tungsten beam shield**

Etc...

SC Link (MgB₂, 100m, 110kA)

2017/4/20

Cross Sections of IR Magnets

11 cross sections, 92 magnets (+spare)

Cross-sections in scale

- L_{mech.}: 0.1 m to 8 m
- Development programs for all model magnets are underway.

FULKA Simulation: Geometry (IT Quad. - D1)

Primary source of the energy deposition in the SC coil is pp collision debris

HL-LHCV1.3 (255µrad half crossing angle, @*=20cm)

A. Tsinganis, F. Cerutti

- Various updates:
 - Cryostat (position, composition) (info from D. Ramos)
 - Detailed VAX added
 - Realistic BS shielding extension to 45° (20% filling factor, explicitly modelled)
 - Interconnects (see next section)

VAX model by I. Efthymiopoulos & I. Bergstrom

FLUKA: Peak Dose Profile

Cold Bore and Beam Screen

C. Garion

Elastic supporting system: Low heat leak to the cold bore tube at 1.9K Ceramic ball with titanium spring Cold bore (CB) at 1.9 K: 4 mm thick tube in 316LN

Pressure boundary

Radiation Shield

Tungsten alloy blocks:

- Chemical composition: 95% W, ~3.5% Ni, ~ 1.5% Cu
- mechanically connected to the beam screen tube: positioned with pins and titanium elastic rings
- Heat load: 15-25 W/m

- Thermal links:
- In copper
 - Connected to the absorbers and the cooling tubes or beam screen tube

Beam screen tube (BS) at ~ 50 K:

- Perforated tube (~2%) in High Mn High N stainless steel (1740 l/s/m (H2 at 50K))
- Internal copper layer (80 μm) for impedance
- a-C coating (as a baseline) for e- cloud mitigation
- Laser treatments under investigation

For Q1, production of BS will start at beginning 2018.

Cooling tubes:

- Outer Diameter: 10 or 16 mm
- Laser welded on the beam screen tube

FLUKA: Peak Power Density

• Peak power density values below 3 mW/cm³ everywhere.

See slides of "Cable insulation" and "Magnet Structure" in view of *temperature distribution in the SC coil* later.

A. Tsinganis, F. Cerutti

FLUKA: Dynamic Heat Load

L=5.0x10³⁴ cm⁻² s⁻¹

	Vertica	l (IP1)	Horizontal (IP5)		
Magnets	Magnet cold mass, 1.9 K	Beam screen, ~50 K	eam screen, Magnet cold ~50 K mass, 1.9K		
		Power [W]			
Q1A + Q1B	114	170	113	169	
Q2A + corr.	101	68	99	65	
Q2B + corr.	126	87	136	100	
Q3A + Q3B	134	80	119	70	
СР	54	62	42	46	
D1	79	56	67	46	
Beam pipe extensions	21	72	21	64	
TOTAL	629	595	597	560	

• Present cooling capability of IT Quad is only 250 W at 1.9 K.

Need of new cryogenic plants for IP1 & IP5 respectively. 2 x 18 kW @ 4.5 K (3kW@1.9K) (!!)

A. Tsinganis, F. Cerutti

FLUKA: Radiation in the Tunnel A. Tsinganis, F. Cerutti

R1 - High energy hadrons [cm⁻²/250fb⁻¹] , -10cm < Y < 10cm

Dose profile in the tunnel (X=-1.6m, Y=0) ($L_{int} = 250 \text{ fb}^{-1}$)

1 year op. >> 250 fb⁻¹

- Dose, thermal and 1MeV neutron equivalent fluence & high energy hadron fluence estimated.
- Total Fluence: < ~10²¹ m⁻² around beam pipe for 3000 fb⁻¹.

 In general, higher levels in the matching section (not IT or D1!!) for horizontal crossing.

 \checkmark > 1 MGy for 3000 fb⁻¹

^{2017/4/20}

Cryogenics for HL-LHC IT Quads. & D1

 Baseline: Cold mass in pressurized HeII at 1.9 K, 1.3 bar w/ HX (Saturated Hell at 16 mbar)

>> Same as today.

- But, total heat load increased to ~640W!!
 - **3 x (2 x φ68 mm HX pipes)**
 - 2 x \$\operatorname{100} mm pumping lines

(15 mbar; 4 K) (1.3 bar; 20 K

LSSR5

Slope dependent!

lumper1

......

to DFHX

X

lumner? (right of D1)

Cold mass

...........

HL-LHC Beam Separation Dipole (D1)

	A series production	2 m model		
Coil aperture	150 mm			
Field integral	35 T m 9.8 T m			
Nominal field	5.57 T			
Peak field	6.44 T (SS), <mark>6.56 T</mark> (coil end)			
Operating current	12.0 kA			
Operating temperature	1.9 K			
Field quality	<10 ⁻⁴ w.r.t <i>B</i> ₁ (R _{ref} =50 mm)			
Load line ratio	75.4% (SS) , 76.6% (coil end) at 1.9 K			
Differential inductance	4.0 mH/m			
Conductor	Nb-Ti: LHC-MB outer cable			
Stored energy	340 kJ/m			
Magnetic length	6.33 m	1.73 m		
Linet land	135 W (Magnet total)			
Πεαι Ιυαύ	2 mW/cm ³ (Coil peak)			
Radiation dose	> 25 MGy			

Technical challenges

- Large aperture : Management of coil size and pre-stress.
- Radiation resistance : Radiation resistant material for coil parts. Cooling capability.
- Iron saturation : Good field quality from injection to nominal current.

Plan of Japanese in-kind contribution (the budget is not approved yet.)

- Full scale prototype (magnet in cryostat): 1
- Series production: 6

2017/4/20

Cable Insulation and Heat Transfer

- Baseline for the D1: NbTi SC cable for LHC MB Outer layer (given)
- Insulation: Standard for MB >> Apical tape, cured at 197 deg. C at > 15 MPa.
 - Screening in terms of;
 - ✓ Radiation resistance up to 40 MGy : All polyimide. >> OK
 - ✓ Cooling capability below **3 mW/cm³** : $T_{cable} < \lambda$ point (2.17K). See below. >> OK

T_{max} must be below 2.17 K to exploit a good cooling capability of HeII.

P.P. Granieri.

D1 Structure for Cooling Requirement

Calculation: T map and T margin

assShoe 0.5mm

Radiation Resistance GFRP

Flexural Strength Meas. after Gamma-ray Irradiation:

- Ordinary G10 (Epoxy) already showed • significant degradation even at 10 MGy.
- New GFRPs (CE&Epoxy, BT, and BMI) show • good radiation resistance up to **100 MGy**.

New GFRP (S2 glass & BT resin) will be adopted for the IR magnets (not only D1)

Flexural strength test (G10, 30MGy)

Development of the 1st D1 2m model at KEK

Curing

Collaring

Yoking

Shell welding

Completed magnet

Some minor technical issues found. But they were basically solved, or improvement will be applied to the 2nd model.

Quench Performance: D1 2m Models 01 & 01b

> Unsatisfactory quench behavior due to insufficient preload at assembly.

Model 01b

Decision to reassemble the model 01 with increasing preload on the SC coil.

Significant improvement of quench behavior: reaching to the ultimate at 6th ramp in the 1st test cycle.

Good training memory after full thermal cycle.

2017/4/20

MFM Results of Model 01

Field integral at 10kA

n	RE		S	S	LE		Total		
	$\widetilde{b_n}$	$\widetilde{a_n}$	$\widetilde{b_n}$	$\widetilde{a_n}$	$\widetilde{b_n}$	$\widetilde{a_n}$	$\widetilde{b_n}$	$\widetilde{a_n}$	
1	1937.51 (1965.25)	2.53 (0.00)	6031.67 (6080.50)	-0.46 (0.27)	2030.82 (1954.25)	-28.55 (-17.11)	10000.00 (10000.00)	-26.47 (-16.80)	C
2	0.25 (0.00)	-2.50 (0.00)	-0.36 (0.00)	-0.23 (0.00)	0.25 (0.00)	-0.93 (0.00)	-0.17 (0.00)	-3.67 (0.00)	<
3	-9.26 (-7.70)	-0.24 (0.00)	18.76 (21.41)	0.29 (0.13)	-5.19 (-5.50)	6.74 (5.74)	4.30 (8.21)	6.78 (5.88)	Ę
4	0.21 (0.00)	-0.26 (0.00)	0.00 (0.00)	0.19 (0.00)	0.07 (0.00)	0.23 (0.00)	0.28 (0.00)	0.17 (0.00)	
5	-1.12 (-1.73)	-0.07 (0.00)	-1.14 (-0.66)	0.05 (-0.02)	1.42 (-0.08)	-0.52 (-0.52)	-0.84 (-2.46)	-0.54 (-0.54)	
6	0.14 (0.00)	-0.13 (0.00)	-0.04 (0.00)	0.03 (0.00)	-0.04 (0.00)	-0.02 (0.00)	0.06 (0.00)	-0.12 (0.00)	
7	-1.34 (-1.49)	-0.01 (0.00)	0.18 (0.20)	0.08 (0.03)	-0.62 (-0.70)	0.36 (0.39)	-1.78 (-1.99)	0.43 (0.41)	
8	0.12 (0.00)	-0.12 (0.00)	-0.10 (0.00)	-0.08 (0.00)	-0.19 (0.00)	0.07 (0.00)	-0.18 (0.00)	-0.12 (0.00)	
9	-1.16 (-1.32)	-0.06 (0.00)	-0.02 (0.09)	-0.09 (-0.01)	-0.92 (-1.01)	0.00 (-0.15)	-2.09 (-2.23)	-0.16 (-0.16)	
10	0.06 (0.00)	-0.05 (0.00)	-0.08 (0.00)	-0.03 (0.00)	-0.08 (0.00)	0.02 (0.00)	-0.10 (-0.81)	-0.06 (0.00)	Me (RO

$$\overline{b_n(l)} = \frac{\int B_n(l)dz}{\int B_1(l)dz} \times 10^4$$

Measurement (ROXIE cal.)

• ROXIE3D calculations generally agree with the measurement.

- Need improvement of ROXIE models for b_3 and b_5 .
- Skew and un-allowed multipoles are sufficiently small.

Summary

• LHC operation in 2016 was very successful.

> 40 fb⁻¹ @ 13 TeV with a peak luminosity of 1.4 e34 cm⁻²s⁻¹

- High Luminosity LHC project is underway in CERN with international collaborations including Japan. Construction will be started around 2024, followed by physics run 2026-2037 (?).
 - > 5x10³⁴ cm⁻² sec⁻¹, 250-300 fb⁻¹/year, 3000 fb⁻¹
 - Significant efforts are needed to cope with an increased luminosity (heat load, stored energy, radiation...).
- Particle transport simulations (FLUKA, MARS) have provided the crucial information for the design guidelines of the HL-LHC systems.
 - ➤ New helium cryogenic plant for IP1 & 5.
 - > New service tunnels, layout in the tunnel.
 - Tungsten beam screen
 - Structure and materials of the SC magnet, etc.
- Design of the HL-LHC beam separation dipole magnet (D1) and 2m model magnet development in view of radiation issues has been carried out by KEK.

> New radiation resistant GFRP (BT-S2) successfully developed.

➤ Cold tests of Model 01b have shown positive results.

2017/4/20

S. Claudet

HL-LHC Cryogenic Upgrade

- 2 new cryoplants (~18 kW @ 4.5 K incl. ~3 kW @ 1.8 K) at P1 and P5 for highluminosity insertions
 - Enable to accept the max. heat loads of 2 x 950 W for the ultimate luminosity (7.5 x 10³⁴ cm⁻² s⁻¹) with some redundancy.
- 1 new cryoplant (~4 kW @ 4.5 K) at P4 for SRF cryomodules. (Alternative under study: upgrade of 1 existing LHC cryoplant and distribution)
- 11T + Q5@P6
- SRF test facility with beam at SPS-BA6 primarily for Crab-Cavities