Heavy-ion physics in the HL-LHC era

L. Massacrier Institut de Physique Nucléaire d'Orsay

4th Workshop on LHCb Upgrade II

8 – 10 Ap. 2019, Amsterdam, The Netherlands

Outline

☐ Physics goals identified for the HL-LHC era
□ With which observables?
☐ Besides Pb-Pb : pp reference, pA and lighter nuclei
☐ Plans for heavy-on data taking at the LHC in the next decade
□ LHC experiment upgrades relevant for heavy-ion physics
☐ Prospects for pA and AA collisions in collider mode for HL-LHC and beyond (with main focus on the forward region)
☐ Prospects for physics opportunities in fixed target mode for HL-LHC and beyond
□ Conclusions

Physics goals identified for the HL-LHC era

see Z. Citron et al., « Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams», arXiv:1902.10229

Characterize the macroscopic long-wavelength QGP properties (fluid dynamics) with unprecedented precision \rightarrow temperature, QCD phase transition at $\mu_B \sim 0$, viscosity, heavy quark transport coefficients ...

- Access the microscopic parton dynamics underlying QGP properties
 - > color field strength of the medium, colour screening/regeneration, evolution of collective partonic system to hadronic phase
- Developing a unified picture of particle production from small (pp) to larger (pA and AA) systems

 → flow of heavy flavour and quarkonia, energy-loss thermal radiation in small systems strangeness production yersus system si
 - > flow of heavy flavour and quarkonia, energy-loss, thermal radiation in small systems, strangeness production versus system size
- Probing parton density in nuclei in a broad (x,Q^2) kinematic range and search for parton saturation \rightarrow constraining nuclear PDFs at high and low Q^2 , test saturation effects at small x

With which observables?

At HL-LHC (already starts at Run3 for ions): focus on rare probes, their coupling with the medium and their (medium-modified) hadronization process in AA collisions.

→ Requires very large statistics, diverse trigger approaches, upgraded detectors

Characterization of eloss mechanism both as testing ground for multi-particle aspects of QCD and as a probe of medium density

Characterization of mass dependence of eloss, HQ in medium thermalization and hadronization as a probe of medium properties

- Low-p_T production and elliptic flow of several HF hadron species (mainly ALICE, LHCb up to semi-central AA)
- b-jets (mainly ATLAS, CMS)

Precision study of quarkonium dissociation pattern and regeneration as probes of deconfinement

- Low-p_T charmonia and elliptic flow (mainly ALICE, LHCb up to semi-central AA)
- Multi-differential studies of Y states (mainly ATLAS and CMS)

Thermal radiation to map the temperature during system evolution, ρ spectral function modification to probe chiral symmetry restoration

- Low-p_T low mass dilepton production (mainly ALICE, LHCb up to semi-central AA)

Besides Pb-Pb: pp reference, pA, lighter nuclei

- \square Need for pp reference at $\sqrt{s} = 5.5$ TeV:
 - → ALICE (for HF and quarkonia needs) : ~10 pb⁻¹ (see CERN-LHCC-2012-012)
 - → ATLAS/CMS (for high-p_T processes) : ~300 pb⁻¹
- ☐ pPb collisions for three main goals:
 - → Explore the partonic structure of nuclei
 - → Also a reference for Pb-Pb studies (Cold Nuclear Matter effects)
 - → Study the development of collective effects in high-particle density collisions
- ☐ Lighter nuclei to study system size dependence and onset of QGP effects
 - \rightarrow Larger instantaneous luminosity compensates the reduces yield for hard processes (which scales with A²)

Plans for heavy-ion data taking at the LHC in the next decade

- ☐ Running scenario and approved species choices according to ALICE LOI (2012) ALICE Collaboration, J. Phys. G 41 (2014) 087001
- \square Maximum int. rate: 50 kHz in Pb-Pb; peak luminosity: 6 x 10^{27} cm⁻²s⁻¹; integrated lumi: 10nb⁻¹

Some variations possible:

10 pb⁻¹

- Easy modification: replace Pb-Pb by p-Pb or pp ref
- Requiring more preparation: replace Pb-Pb by other specie (eg.Ar-Ar)

J. Jowett, Workshop on the physics of HL-LHC, oct. 2017

Plans for heavy-ion data taking at the LHC in the next decade

☐ New proposal from WG5 on the Physics of HL-LHC:

Z. Citron et al., « Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams», arXiv:1902.10229

- ☐ High lumi Pb-Pb and p-Pb programmes remains a priority for Run3&4
- ☐ Request to increase heavy ion running time from 12 to 14 weeks per run

Larger L_{int} in p-Pb for high precision studies of initial and final state effects, in high multiplicity events

O-O/p-O to study onset of hotmedium effects and to tune cosmicray particle production models

Intermediate AA at high lumi to access probes still rare in PbPb

Year	Systems, $\sqrt{s_{\rm NN}}$	Time	L_{int}
2021	Pb-Pb 5.5 TeV	3 weeks	$2.3~\mathrm{nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2022	Pb–Pb 5.5 TeV	5 weeks	3.9 nb^{-1}
	O–O, p–O	1 week	$500~\mu { m b}^{-1} \ { m and} \ 200~\mu { m b}^{-1}$
2023	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2027	Pb-Pb 5.5 TeV	5 weeks	$3.8 \; {\rm nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2028	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2029	Pb-Pb 5.5 TeV	4 weeks	$3 \mathrm{nb}^{-1}$
Run-5	Intermediate AA	11 weeks	e.g. Ar–Ar 3–9 pb ⁻¹ (optimal species to be defined)
	pp reference	1 week	

+ a large sample (~ 200 pb⁻¹) of pp collisions at \sqrt{s} = 14 TeV to rich highest possible multiplicities in small system

LHC experiment upgrades relevant for heavy-ion physics

ALICE/LHCb → focus on « untriggerable » signal
ALICE : continous readout at 50 kHz; HL-LHC: minimum bias sample x 100 wrt Run2

LHCb strenght w.r.t ALICE in the forward region after the upgrades

Physics reach of ALICE for several observables after the LS2 upgrade (MUON + new MFT tracker)

Table 1: Comparison of physics reach for the two scenarios without and with the MFT (MUON only / MUON + MFT) assuming an integrated luminosity of 10 nb^{-1} in central Pb-Pb collisions. $p_{\rm T}^{\rm min}$ gives the minimum accessible $p_{\rm T}$ for the different observables. The quoted uncertainties include both statistical and systematic uncertainties.

	M	UON only	MUON + MFT	
Observable	$p_{ m T}^{ m min}$ (GeV/c)	uncertainty	$p_{\mathrm{T}}^{\mathrm{min}}$ (GeV/c)	uncertainty
Inclusive J/ψ $R_{\rm AA}$	0	5% at 1 GeV/ <i>c</i>	0	5% at 1 GeV/c
ψ' R_{AA}	0	30% at $1~GeV/c$	0	10% at 1 GeV/c
Prompt J/ψ R_{AA}		not accessible	0	10% at 1 GeV/c
J/ψ from b -hadrons		not accessible	0	10% at 1 GeV/c
Open charm in single μ			1	7% at 1 GeV/c
Open beauty in single μ			2	10% at $2~{ m GeV}/c$
Open HF in single μ no c/b separation	4	30 % at 4 GeV/ <i>c</i>		
Low mass spectral func. and QGP radiation		not accessible	1–2	20% at 1 GeV/c

- ☐ Study of open charm and open beauty still limited
 - Measurement through single muon decay (no PID)
 - Still ~ 20% uncertainty on open charm at $p_T = 0$
 - Open beauty extraction limited to p_T > 2 GeV/c
- □ No calorimeter at forward y (no $X_c \rightarrow y + J/Ψ$)
- □ LHCb will remain the only experiment fully equipped in the forward region (with already excellent M, p_T resolution in pA, and accessing most central AA collisions after the Upgrade Phase II)

LHCb Upgrade PHASE II to access the most central AA collisions

- ☐ Unique opportunity for a general purpose heavy-ion detector suited for pA up to most central AA collisions at forward y
- ☐ Number of tracks in pp collisions at Upgrage Phase II luminosity ~ number of tracks in central Pb-Pb collisions
 → sufficient tracking and calorimeter performances for HI studies
- □ Lower pile-up in pPb/Pbp with respect to pp running → lower occupancies in pPb/Pbp
 → Precise measurement of low-x regime of QCD

LHCb Collaboration, CERN/LHCC 2018-027, PUB-2018-019

Table A.1: Estimated occupancies in different tracking detectors after Upgrade I and Upgrade II.

Detector	Maximum occupancy in most central
	PbPb at $\sqrt{s_{NN}} = 5 \text{ TeV}$
VELO (Upgrade I)	4 %
VELO upgrade (Upgrade II)	1 %
SciFi (Upgrade II)	25%

Prospects for pA and AA collisions in collider mode for HL-LHC and beyond (with main focus on forward region)

Quarkonium and Open HF production in AA collisions

- \Box Heavy quarks produced at early stages of AA collision \rightarrow experience full evolution of system
- ☐ Sequential suppression of quarkonia by color screening in the deconfined medium
- \square Regeneration of charmonia at low p_T and LHC energy
- \square Run 3&4: precise determination of prompt J/ Ψ R_{AA} and v₂ at low-p_T (ALICE) and high-p_T (CMS, ATLAS)
- Ψ(2S) yield will remain statistically limited (3-10% in most central forward events depending on assumptions)
- ☐ Differential measurements interesting to study the interplay between suppression/regeneration
- □ Fully reconstructed open HF hadrons only possible in LHCb in the forward region → interesting in themselves (eloss studies), also normalisation channel for charmonia (total cc cross section)

Quarkonium and Open HF production in AA collisions

- \square X_c measurement challenging in AA
- \Box Complementary to J/Ψ, Ψ(2S) to understand the charmonia suppression/regeneration pattern
- \square Only LHCb can measure $X_c \rightarrow J/\Psi + \chi$ at forward y (down to low p_T)
- □ Interesting new channel $X_c \rightarrow J/\Psi + \mu^+\mu^-$ requires large stat (LHCb, ALICE) \rightarrow 5 fb⁻¹ in pp ~ 100 nb⁻¹ Pb-Pb
- ☐ Measurement of Y-states with good resolution at forward y
- \Box Together with open beauty hadrons down to low p_T (total bb cross section)
- ☐ Measurement of baryonic heavy-quark states benefit from the improved vertex reco performances and boost at forward y

LHCb Collaboration, PRL 119, 221801

Precise differentiel $\psi(2S)$, X_c , Y production measurements could be studied at forward rapidity down to $p_T = 0$ with suitable open-charm and beauty normalization channels

Quarkonium photoproduction in AA collisions with nuclear overlap

- \Box First observation by ALICE of an excess in the yield of J/ ψ at very low-p_T in peripheral AA collisions
 - \rightarrow attributed to coherent photoproduction of J/ ψ in collisions with nuclear overlap
 - → could potentially become a new golden probe of the QGP
- ☐ Run 3&4, measurement in most central AA collisions still challenging (~ 15% uncertainty on the yield)
- \square Excellent p_T resolution (LHCb) to study the p_T shape (and confirm the mechanism)
- \Box Also needs large statistics: polarization measurement, $\Psi(2S)$ and Y vector mesons to study medium interactions

Low mass dileptons and thermal radiation in AA collisions

- Low mass dileptons sensitive to chiral symmetry restoration in the QGP and thermal radiation of the QGP
- \square Need excellent mass resolution to study the resonance line-shape (down to low p_T)
- ☐ Thermal radiation measurement limited by the background subtraction of leptons from HF decays

Figure 1: Prompt-like mass spectrum, where the categorization of the data as prompt $\mu^+\mu^-$, $\mu_Q\mu_Q$, and $hh+h\mu_Q$ is determined using the fits described in the text.

LHCb Upgrade II : unique potential to measure precisely dileptons in the dimuon channel and p line-shape to probe chiral symmetry restoration

Open Heavy Flavour correlations in pA collisions

- □ DD correlations in pA collisions provides information to test modification of nPDF
- \square Measurements in p_T intervals provide differential information to test theoretical models with precision
- □ DD correlations in AA sensitive to in-medium eloss of heavy quarks (radiative versus collisional)

Correlation of fully reconstructed
HF hadrons only possible in LHCb in
the forward region

☐ Run5: Correlation in the bb sector needs luminosity ~ 10 pb⁻¹ in pPb

Drell-Yan and photon production in pA collisions

- \square LHCb can access in pA collisions the low-x regime (10⁻³ 10⁻⁶) of the nucleus to look for parton saturation
- ☐ Unique low mass Drell-Yan measurement down to charmonium mass range demonstrated by LHCb in pp
 - → similar performances can be expected in pPb with LHCB upgrade II
- □ Need large luminosities and background rejection of HF decays from VELO
- \square Also low-p_T photon measurements unique opportunities thanks to improved calorimeter performances at high mult.

Prospects for physics opportunities in fixed target mode for HL-LHC and beyond

- ☐ Several proposals in LHCb in the coming years for different physics motivations in the fixed target mode
- ☐ Proposal in ALICE to install a fixed-target setup (solid target or gas-jet) during LS3

- ☐ Physics opportunities and projections by the AFTER@LHC study group for a LHCb-like detector assuming:
 - $L_{int} \sim 10 \text{ fb}^{-1} \text{ for pH collisions}$
 - $L_{int} \sim 100 \text{ pb}^{-1}$ for pXe collisions
 - $L_{int} \sim 30 \text{ nb}^{-1}$ for PbXe collisions
 - → Well beyond current expectations for Run3

arXiv: 807.00603

Multiplicities in fixed target mode

ALICE TPC $(Z_{target} = 0)$ ALICE muon arm $(Z_{target} = 0)$ LHCb $(Z_{target} = 0)$

L. Massacrier et al., Adv. High Energy Phys. 2015 (2015) 986348

- ☐ Multiplicities in most central fixed target Pb-Xe / Pb-Pb collisions above multiplicity in semi-central Pb-Pb collider events (40-50%) at forward rapidity in the lab
 - → need higher granularity from Upgrade Phase II

Explore the high-momentum fraction x frontier in nucleons and nuclei

☐ With an emphasis on the high-x gluon and heavy-quark content of the nucleon and nuclei

- > Study a possible non-perturbative source of c/b quarks in the proton which would carry a relevant fraction of its momentum
 - → Connexion with CR physics: important input to reduce the uncertainties on the prompt atmospheric neutrino flux

Explore the high-momentum fraction x frontier in nucleons and nuclei

- > Improve the knowledge of PDF for the gluon at large-x [also for strange, charm and bottom quark PDFs]
 - > Precise high-x PDFs crucial theoretical inputs for predictions of processes involving heavy new states in BSM theories
- > Study the origin of the nuclear EMC effect in nuclei (with gluon and sea quarks)

Spin and 3D nucleon structure

☐ Advance our understanding of the dynamics and spin of quarks and gluons inside (un)polarised nucleons

- From the spin crisis to the spin puzzle
- \triangleright For longitudinally polarised nucleon, with helicity + 1/2:

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \ell_g + \ell_q$$

Spin of quarks and antiquarks

Spin of gluons

Orbital angular momentum of quarks and gluons

- First hint by COMPASS that $\ell_g \neq 0$
- > Access information on the orbital motion of the partons inside bound hadrons via Single Spin Asymmetries (Sivers effect)
 - Sivers effects : correlation between the parton transverse momentum k_{T} and the proton spin
 - Gluon Sivers effect at large x_F with gluon sensitive probes
 - Quark Sivers effect at large x_F with Drell-Yan
- \rightarrow Test TMD factorization formalism \rightarrow sign change of A_N between SIDIS and DY

Spin and 3D nucleon structure

Drell-Yan STSA to probe the quark Sievers effect

J/ψ STSA to probe the gluon Sievers effect

Photoproduced J/ ψ to probe the gluon GPD Eg

$$A_N = \frac{1}{\mathcal{P}_{\text{eff}}} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

Heavy-ion physics at large rapidity

- □ Advance the understanding of hadronic matter properties under extreme conditions (QGP) and explore the phase diagramme of nuclear matter thanks to a rapidity scan down to the target rapidity
 - \triangleright Rapidity scan at 72 GeV with FT@LHC can complement the RHIC beam energy scan from 62.4 GeV down to 7.7 GeV (at $y_{cms} \sim 0$)
- \Box Advance our understanding of QGP macroscopic properties by probing the temperature dependence of the shear viscosity to entropy density ratio (η /s) of the created matter

☐ Test the factorization of Cold Nuclear Matter effects with the Drell-Yan process

Heavy-ion physics at large rapidity

- \Box Search for the phase transition by looking at $\Upsilon(nS)$ suppression as a function of rapidity and system size (centrality and several targets)
 - \triangleright In PbA collisions at $\sqrt{s_{NN}} \sim 72$ GeV, $\Upsilon(3S)$ and $\Upsilon(2S)$ are expected to be suppressed: calibration of the QGP thermometer in AA
 - > Clarify the charmonium suppression pattern between top SPS and RHIC energies (no recombination, high statistics for hard probes)
 - \triangleright Probe large gluon x_2 in the target, in particular with $\Upsilon(\mathsf{IS}) \to \mathsf{constrain}$ gluon anti-shadowing and EMC effects in pA

EDM/MDM of heavy and strange baryons

- ☐ Measurement of MDM of heavy baryons never performed due to their short lifetime
 - > test of QCD calculations, improve current understanding of internal structure of hadrons
- ☐ Measurement of EDM of heavy and strange baryons powerful to probe physics beyond the standard model
- ☐ Setup unique to LHCb

Conclusions

- ☐ HL-LHC already starts with Run3 for Heavy-ions
- ☐ Four main physics goals identified with heavy-ions for Run3&4:
 - Characterize the macroscopic long-wavelength QGP properties (fluid dynamics) with unprecedented precision
 - Access the microscopic parton dynamics underlying QGP properties
 - Developing a unified picture of particle production from small (pp) to larger (pA and AA) systems
 - Probing parton density in nuclei in a broad (x,Q^2) kinematic range and search for parton saturation
- Altough no current approved plans for ion running beyond LS4, proposal exists (WG5 HL-LHC study group) to extend the heavy ion physics programme
- □ LHCb upgrade phase II represents a great opportunity for LHCb to perform unique measurements in the forward region up to most central AA collisions and down to low p_T (quarkonia, Open HF, low mass dileptons, Drell-Yan...)
- LHCb is currently the only detector working with a fixed target mode and is well placed to conduct a full high-luminosity fixed target programme during HL-LHC and beyond

BACKUP

ALICE versus LHCb rapidity coverage in fixed-target mode

- (I) pp/pA fixed target collisions
- (2) PbA fixed target collisions

Drell-Yan in fixed target AA collisions

