The LHCb ECAL upgrade(s) and ongoing R&D

Outline:

- Limitations of current ECAL
- Requirements for Upgrades Ib and II
- Technological options and overview of ongoing R&D

→ See next talk by Loris on prototype results

On behalf of the SPACAL R&D group:

- Collaborating institutes
 - members of LHCb, RD18, CMS, …
 - CERN, IHEP, ITEP, MISiS, U Barcelona…
- Industrial partners
 - CRYTUR, FOMOS, Nanocom, …

(1st Miniworkshop with partners last week)

→ New groups most welcome!
The current LHCb Electromagnetic Calorimeter

Current LHCb ECAL:
- Large Shashlik array ~50 m² with 3312 modules and 6016 channels
- Modular wall-like structure of ~8 x 7 m², two halves open laterally within few minutes
- Three sections (Inner, Middle, Outer) of cell size 4x4, 6x6, 12x12 cm²
- $\sigma(E)/E \sim 10%/\sqrt{E} \oplus 1\%$

Energy resolution with electrons

\[
\frac{(9.4\pm0.2)\%}{\sqrt{E}} \oplus (0.83 \pm 0.02)\%
\]
ECAL Shashlik modules

Fibres with loops

Components:
- Germany
- Japan
- Russia
- ...

PMT and HV base

Components:
- Germany
- Japan
- Russia
- ...

3312 shashlik modules with 25 X0 Pb

Developed by Russia & CERN (TDR 2000)

Hamamatsu R7899-20

9 April 2019 4th Workshop on Upgrade II Amsterdam Andreas Schopper
Radiation environment at $L=2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

- Radiation dose at shower maximum is ~2-2.5 kGy/fb$^{-1}$
- By now accumulated ~10 fb$^{-1}$ in run 1&2 \rightarrow ~20-25 kGy
- Current Shashlik modules estimated to “survive” \leq 40 kGy
- By LS3 ~32 inner modules to be replaced (~50-60 kGy)
- New modules to sustain much higher radiation doses up to ~1000 kGy (!)
LHCb ECAL Upgrade II

2020 - 2023: submit Technical Design Reports
- 2020/21: Framework TDR for Upgrade II including sub-detector “Consolidation” TDRs
- 2023/24: Sub-detector TDRs for Upgrade II

LS3 in 2024/25: Consolidation
- Replace modules around beam-pipe (~32 modules) compatible with L=2x10^{33} cm^{-2}s^{-1}

LS4 in 2030/31: LHCb Upgrade II
- Rebuilt ECAL in high occupancy “belt-region” compatible with luminosity up to L ≤ 2x10^{34} cm^{-2}s^{-1}
- Include timing information to mitigate multiple interactions/crossing
ECAL requirements for Upgrade II

Overall requirements:

✓ sustain radiation doses of up to ~1MGy and \(\leq 6 \cdot 10^{15} \text{ cm}^{-2} \) for 1MeV neq/cm\(^2\) at 300 fb\(^{-1}\)

✓ include a very fast component ~several 10\(^{th}\) ps for pile-up mitigation
 - into sampling modules or/and
 - with additional timing preshower

✓ keep good energy resolution of order \(\sigma(E)/E \sim 10\%/\sqrt{E} \oplus 1\% \)

✓ handle increased occupancy by improving spatial resolution in inner & middle region

✓ respect dimensional constraints of a module: 12 x 12 cm\(^2\) outer dimension

\(\text{(1MGy} = 100\text{Mrad})\)

ECAL doses @ EM shower max, Gy, 300 /fb

ECAL 1MeV neq/cm\(^2\), Z=1260, 300 /fb

LHCb Preliminary

limit for Shashlik

\(\leq 4 \cdot 10^4 \text{ Gy}\)

does not exceed ~10\(^6\) Gy in centre

\(\leq 6 \cdot 10^{15} \text{ 1 MeV n eq./cm}^2\) in centre
ECAL requirements for Upgrade II

3 regions of ECAL

ECAL doses @ EM shower max, Gy, 300 /fb

Matthias Karacson & Yuri Guz
ECAL requirements for Upgrade II

inner region

ECAL doses, Gy, 300 /fb

(@ EM shower max)

- **“hot” inner region:** ~10^5-10^6 Gy
- **“intermediate” inner region:** ~few10^4-10^5 Gy

Instrumented region but currently not R/O
Radiation resistance requirements to modules:

- in **“hot” inner region** need of very rad. hard modules sustaining up to ~ 1000 kGy
- in **“intermediate” inner region** need of modules sustaining between ~ 50 to 200 kGy
- major(?) part of **middle region** and all of **outer region** compatible with current shashlik type modules resisting up to ~ 40 kGy

From radiation point of view: (not taking into account cell size requirements due to occupancy)

- need ≤ 32 modules for extreme conditions (up to ~ 1MGy)
- need another ~ 150 new modules with “moderate” radiation requirements (up to ~ 200kGy)
- can “reshuffle” inner-type modules (176 modules with $4 \times 4 \text{cm}^2$ cells) to middle region
- can “re-shuffle” middle-type modules (448 modules with $6 \times 6 \text{cm}^2$ cells) to outer region
- 2688 modules out of a total of 3312 modules are of outer-type with $12 \times 12 \text{cm}^2$ cells

From physics and reconstruction point of view: (→ talk by Zehua and Yasmine)

- 5D ECAL requirements (E, x, y, z, t) to be determined from physics performance studies for:
 - “hottest” and “intermediate” inner region to define E-resol., cell size, Moliere radius…
 - middle and outer region to optimize “re-shuffling strategy”
 - note: no need anymore of square regions (no L0) → better match to irradiation map
ECAL requirements for Upgrade II

- 32 modules around beam-pipe can be replaced without dismantling of complete structure (special mechanics to lift columns)
- Replacing and re-shuffling modules within “the belt” will require **dismantling of a major part of the calorimeter wall**

Special mechanics to lift columns for replacing modules around beam-pipe
Possible options for new ECAL modules

- **Homogeneous crystal calorimeter (with longitudinal segmentation?):**
 - Fast and **radiation hard crystal** with high light yield

- **Sampling calorimeter:**
 - **Converter material:** Lead, Tungsten or various alloys (with typical $R_M \sim 1-2\text{cm}$)
 - **Radiation hard crystal:** as scintillating medium with high light yield and fast response
 - **Fast timing component:** of ~few 10^{th} ps in scintillating crystal for pile-up mitigation
 - **Radiation hard photodetector:** with high efficiency in the required spectral range
 - For Shashlik: **Radiation hard light-guide/fibre** to transport light

Generic R&D is ongoing in collaboration with experts on crystals & absorbers:
- performance studies of sampling calorimeters (energy & timing resolution)
- radiation hard and fast scintillators of garnet type (i.e. YAG and GAGG)
- absorber materials from tungsten alloys with Cu and Pb
- radiation hardness of GaAs photodiodes with epitaxial technology
- determination of specifications for fast readout electronics
Performance studies of sampling calorimeters
Possible options for new ECAL modules

Pros and cons of different options:

Homogeneous Crystal:
- Requires long crystal of ~40cm to contain 25 X_0
- “given” Moliere Radius
- Very good homogeneity
- Potentially very good E-resolution (<10%)
- Large volume of crystal → high cost

Shashlik type module:
- Can be made very compact ~15-20cm
- Moliere Radius “tunable”
- No rad. hard WLS fibers (yet) to transport light!
- Challenging optimization to reach $\sigma(E)/E \leq 10%/\sqrt{E}$
- Some cost optimization possible

Spaghetti type module:
- Can be made very compact ~15-20cm
- Fibers scintillate AND transport light!
- Moliere Radius “tunable”
- Challenging optimization to reach $\sigma(E)/E \leq 10%/\sqrt{E}$
- Some cost optimization possible

Sampling Technologies
Performance optimization of sampling calorimeters

Advantage of sampling calorimeters:

- sampling fraction (ratio of active to inactive material) can be optimized
 - define fiber dimension (cross section)
 - define fiber-to-fiber distance and fiber layout
- tunable radiation length (X_0) and shower width (R_M)
 - R_M should be of same order than cell size
 - X_0 should be as small as possible (short module = short fibers)

Ongoing R&D:

- for inner region \rightarrow SPACAL R&D: (no need of rad hard wavelength-shifting fibers)
 - fiber size and
 - fiber-to-fiber distance and fiber layout
 - crystal to absorber ratio
 - longitudinal segmentation
 - minimization of module length (X_0)
 - optimization of Moliere radius (R_M) and cell size
 - optimization of timing response
- for middle and outer region \rightarrow Shashlik R&D
 - performance of timing response (\rightarrow see talk by Loris)
Performance optimization of SPACAL

Simulation studies ongoing on dependence of energy resolution on:
✓ fiber dimension
✓ fiber-to-fiber distance
➢ Current prototype 1x1 mm² fibers with 1.8 mm pitch

Simulation studies will start on detailed fiber layout with:
➢ shifted fiber rows vs. aligned fiber rows
➢ possibility of inclined fibers?

Fiber layout has draw-back on manufacturing technique of absorber!
Performance optimization of SPACAL

Optimization of longitudinal segmentation:
- reconstruction of overlapping showers
- needs detailed simulation

γ, e±
overlapping showers in 1st segment

γ, e±
shower separation in 1st segment

1/2 1/2
present prototype

1/3 2/3
asymmetric segmentation might be better for overlapping shower separation
→ next prototype

For illustration only!
R&D on radiation hard and fast scintillation crystals
Properties of Garnet:Ce doped crystals

<table>
<thead>
<tr>
<th></th>
<th>(\text{Y}_3\text{Al}5\text{O}{12}:\text{Ce}) (YAG)*</th>
<th>(\text{Lu}_3\text{Al}5\text{O}{12}:\text{Ce}) (LuAG)*</th>
<th>(\text{Gd}_3\text{Al}_2\text{Ga}3\text{O}{12}:\text{Ce}) (GAGG)**</th>
<th>(\text{Lu}_2\text{SiO}_5:\text{Ce}) (LSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>density (g/cm(^3))</td>
<td>4.57</td>
<td>6.73</td>
<td>6.63</td>
<td>7.4</td>
</tr>
<tr>
<td>(X_0) (cm)</td>
<td>3.5 cm</td>
<td>1.3</td>
<td>1.59</td>
<td>1.1</td>
</tr>
<tr>
<td>Refraction index</td>
<td>1.83</td>
<td>1.84</td>
<td>1.85</td>
<td>1.82</td>
</tr>
<tr>
<td>(\Lambda_{\text{max}}) (nm)</td>
<td>550</td>
<td>535</td>
<td>520</td>
<td>420</td>
</tr>
<tr>
<td>(\text{LY}) @ RT (ph/MeV)</td>
<td>35000</td>
<td>25000</td>
<td>50000</td>
<td>30000</td>
</tr>
<tr>
<td>decay time (ns)</td>
<td>70 + slow component</td>
<td>70 + slow component</td>
<td>60 + slow component</td>
<td>40</td>
</tr>
<tr>
<td>rise time (ps)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Key requirements:
- radiation hardness up to 1MGy (light yield, attenuation length…)
- good timing properties for both, the decay time component (spill-over, 25ns) and the rise time (pile-up mitigation, ~several 10\(^{th}\) of ps)
R&D on radiation hardness of Garnet crystals

R&D on radiation hard garnet crystals:

- GAGG:Ce,Mg

1 cm thick sample
- before irradiation
- after irradiation to 910 kGy

Ingot GAGG crystal

Irradiation by Yuri Guz
M. Lucchini et al. NIM a 816 (2016) 176-183

Cutting 1mm x 1mm, 10cm long GAGG fiber from ingot

- GAGG crystals resist to radiation of ~1 MGy (100 Mrad)
- Can be cut to 1x1 mm² fibers with max length of ~10 cm

YAG:Ce - sample #2948

tested up to ~100 kGy

Irradiation by CERN RD18 (CCC) group

Samples of GAGG crystals irradiated at CERN
R&D on optical performance of GAGG fibers

- 500 GAGG fibers of 1mm x 1mm x 10 cm produced by FOMOS
- Quality Assurance (QA) of fibers at CERN and in Moscow
- Developed portable QA setup, easy and fast to use

- two measurements:
 - effective attenuation length
 - relative fiber light yield

- Preproduction samples measured:
 - $L = 104.2 \pm 3.7$ cm
 - $L = 101.5 \pm 3.3$ cm

- fibers have an excellent effective attenuation length of ~ 1m
R&D on timing properties of Garnet crystals

Decay time properties: \(t_d \)

- **GAGG:Ce**
 \(t_d: 101\text{ns}, 319\text{ns} \)

- **GAGG:Ce:Mg**
 \(t_d: 51\text{ns}, 196\text{ns} \)

- **GAGG:Ce:Mg with improved co-doping**
 \(t_d: 36\text{ns}, 125\text{ns} \)

- **Kamada et al., O-14-3 at SCINT2015**
- **M. Lucchini et al., NIM A Volume 816 (2016), pp 176–183**

- ✓ minimize **spill-over** by minimizing pulse length
- ✓ the decay time can be parametrized by two components
- ✓ a shorter decay time and strong decrease of the slow component can be achieved by proper choice of Ce and Mg co-doping

- ➤ achieved already \(t_d \) in the right ballpark, optimization ongoing
R&D on timing properties of Garnet crystals

Rise time properties: t_s

- **GAGG:Ce**
 - $t_{\text{rise}} = 1757\text{ps}$

- **GAGG:Ce, Mg**
 - $t_{\text{rise}} = 53\text{ps}$

- Mitigate pile-up by minimizing rise time
- The rise time can be parametrized by a single component
- A fast rise time and strong decrease of slow component can be achieved by proper choice of Mg co-doping

- Achieved already t_s of 53ps, optimization ongoing

S. Gundacker et al, NIMA A 891 (2018) 42–52

R&D on absorber materials with tungsten alloys (Cu, Pb)
R&D on absorber materials

- Tune radiation length (X_0) and shower width (M_R)
 - M_R should be of same order than cell size
 - X_0 should be as small as possible (short module = short fibers)

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>Pb</th>
<th>Cu</th>
<th>GAGG</th>
<th>YAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density [g/cm³]</td>
<td>19.3</td>
<td>11.4</td>
<td>8.96</td>
<td>6.7</td>
<td>4.6</td>
</tr>
<tr>
<td>X_0 [cm]</td>
<td>0.35</td>
<td>0.56</td>
<td>1.44</td>
<td>1.59</td>
<td>3.53</td>
</tr>
<tr>
<td>M_R [cm]</td>
<td>0.93</td>
<td>1.60</td>
<td>1.57</td>
<td>2.10</td>
<td>2.76</td>
</tr>
</tbody>
</table>

- Pure tungsten has very small Moliere radius and small radiation length but problematic mechanical properties (brittle)
 - Cannot be machined and therefore strongly limits possible absorber shapes
- Cu-W (25%-75%) alloy is available on the market with good mechanical properties
 - Small Moliere Radius but relatively large radiation length (long module)
- Pb-W alloy allows for same Moliere radius as Cu-W but with smaller radiation length
 - Shorter module → shorter fibers!

However:

lead-tungsten alloys have never been produced!
→ have started R&D on Pb-W alloys
R&D on different alloys for absorber

- **SPACAL prototype (CERN)**
 - 25% Cu – 75% W converter with 1.2 mm machined square holes

- **Cu-W absorber plate**
 - machined grooves to host fibers

- **First Pb-W test sample (MISiS)**
 - Monolithic block of Pb-W composite including 1x1 mm² scintillation fibers

<table>
<thead>
<tr>
<th>Technology</th>
<th>Infiltration</th>
<th>Powder metallurgy</th>
<th>Squeeze casting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling</td>
<td>?</td>
<td>☒</td>
<td>✓</td>
</tr>
<tr>
<td>Forming (forging)</td>
<td>?</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td>Machining</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Ongoing activity:
- R&D on reducing Pb content in Pb-W alloy
- Developing cost effective manufacturing techniques of absorber!
Current SPACAL prototype:

- Cu-W alloy with density of 14.9 g/cm2
- 20 cm long module to reach 25 X_0
- Longitudinal segmentation: 10 cm + 10 cm
- 9 cells of 2 x 2 cm2 with $M_R \sim 1.5$ cm
- 1 cell of GAGG (FOMOS)
- 4 cells of YAG (CRYTUR)
- 4 cells of SCSF78 (KURURAY)

New prototype under discussion:

- Pb-W alloy (or pure W) with modified geometry (fiber layout)
- With reduced length (~15 cm)
- Longitudinal segmentation: 5 cm + 10 cm
- Cell size of 2 x 2 cm2 or 1.5 x 1.5 cm2
- Equip all cells with GAGG and YAG

- Study energy resolution and timing properties as function of alloy, crystal, geometry, cell size, segmentation, …
Upgrade II requires R&D on new rad hard ECAL modules for inner region

Ongoing R&D to develop a SPACAL type sampling calorimeter with:

- very good energy resolution of $\sigma(E)/E \sim 10%/\sqrt{E} \oplus 1%$
- good spatial granularity with varying cell sizes (1.5x1.5 cm2, 2x2 cm2, etc.)
- segmentation in depth with readout on both sides (note: segmentation could be 1/3, 2/3 or 1/4, 3/4 etc. and could possibly consist of different materials)
- respecting the given modularity of a module with size 12x12 cm2
- scintillators sustaining radiation doses up to 1 MGy and up to a few 10^{15} 1 MeV neq/cm2
- scintillators that have fast rise time (10^{th} of ps) and short decay time (~25 ns)
- absorber material that consists of a very dense (~17 kg/dm3) alloy allowing to “tune” the Moliere Radius (X,Y dim.) and the radiation length (Z dim.)
- absorber that fulfills the mechanical specifications to host 1x1 mm2 fibers

Need to pursue physics and reconstruction studies to define 5D ECAL requirements (E, x, y, z, t) in inner and middle ECAL region
Many thanks to the organizers for hosting us in such an inspiring location!