

NA64: new results and prospects

1.

S.N. Gninenko INR, Moscow for the NA64 Collaboration: Univ. Bonn, JINR Dubna, CERN, INR Moscow, IHEP Protvino, LPI Moscow, SINP MSU, TSPU Tomsk,

UTFSM Valparaiso, ETH Zurich

<u>Outline</u>

- Motivation
- NA64 overview
- Results with e⁻: A⁻->inv, LDM, X, A⁻-> ee, ⁸Be anomaly
- Plans for $\mu^{\scriptscriptstyle -}$: $S_{\!\mu} \; Z_{\!\mu} \;$ and (g-2) $\!\mu,$ high mass A´ and LDM
- Summary

- One of possible answers:
- light, sub-GeV scale DM from Dark Sector (DS).
- Dark sector consists of particles and fields which are singlets with respect to the gauge group of the SM and interacts with visible matter presumably only via gravity.

- Hubble expansion, T & n_{χ} decrease
- For T < $m_{\chi} \chi \chi$ -SM annih. gets suppressed, $n_{\chi} \sim T^{3/2} e^{-m\chi/T}$
- Finally $\chi\chi$ -SM annih. stops, n_{χ} ~ frozen in time $\Gamma_{inel} = n_{\chi} < \sigma v > ~ H$
- $< \sigma V > \cong 3 \times 10^{-26} \text{ cm}^3/\text{s} \cong (1/20 \text{ TeV})^2$
- If DM is in sub-GeV range it must be SM neutral
- Thermal freeze-out motivate new interaction to mediate DM-SM annihilation. New force in addition to gravity is required!

- new massless (mirror DS) or massive dark photon with γ -A´ kinetic mixing: $\Delta L=\epsilon/2 F \mu A_{\mu\nu}$
- GUT prediction for the size of the γ -A´mixing strength (ϵ <<1): 1-loop: $\epsilon \sim 10^{-4} - 10^{-2}$; 2 loops: $\epsilon \sim 10^{-5} - 10^{-3}$, $m_{A^{'}} \sim \epsilon^{1/2} M_Z$
- A´decays:
- $m_{A'} < 2m_{\gamma}$: visible decays into SM, $A' \rightarrow e^+e^-$, $\mu^+\mu^-$, hadrons,...
- $m_{A'} > 2m_{\chi}^{2}$: invisible decays into DM: $A' \rightarrow \chi \chi$, $\alpha_{D} >> \epsilon$, $\alpha_{D} = e_{D}^{2}/4\pi$
- Cross section for χ -DM annihilation: $\Gamma_{\text{inel}} = n_{\chi} < \sigma V >$ $\sigma v \approx [\alpha_{D} \epsilon^{2} (m_{\chi}/m_{A'})^{4}] \alpha/m_{\chi}^{2} = y \alpha/m_{\chi}^{2};$ $y = [\alpha_{D} \epsilon^{2} (m_{\chi}/m_{A'})^{4}] - \text{useful variable to compare exp. sensitivities}$ Light Dark World 2019 - NA64: new results and prospects, Vienna, 12/08/2019

- light DM candidates χ : scalars, Majorana, pseudo-Dirac fermions.
- (ϵ , α_D , m_{χ} , m_A) parameter space: target for accelerator experiments

- Bremsstrahlung, e.g. $e^{-}Z \rightarrow e^{-}Z A^{\prime}, \sigma \sim Z^{2} \epsilon^{2}/m_{A^{\prime}}^{2}$
- π⁰,η,η'...->γΑ´, Α´->χχ, ee, μμ, ..

Light Dark World 2019 - NA64: new results and prospects, Vienna, 12/08/2019

Missing energy/momentum

NA64e (active dump)

NA^{\circ}64 is designed to search for new, in particular Dark Sector physics in missing energy events. Broad research program with e-, μ , π , K, and p beams at the CERN SPS (PBC'16–19).

History:

- **December 2013:** proposal P348 to SPSC
- **April 2014:** recommended for tests
- April 2014-March 2015: design, production, delivery at CERN.
- **October 2015:** feasibility test run+upgrade
- **March 2016:** approved as NA64 experiment at the CERN SPS

Main goals for searching in 2016 - 2018 runs:

- Invisible A' as an explanation of $(g-2)_{\mu}$
- A' mediator of LDM production in invisible decay mode
- New X(17) boson from the ⁸Be anomaly, $A' \rightarrow e+e-$ decays

S.Andreas et al., arXiv: 1312.3309 S.G., PRD(2014)

Main components :

- clean 100 GeV e- beam
- e- tagging system: tracker+SRD
- 4π fully hermetic ECAL+ HCAL

- in: 100 GeV e- track
- out: $E_{FCAI} < E_0$ shower in ECAL
- no energy in Veto and HCAL

Background:

- e- from μ , π , K decays in flight
- e- from interactions in beamline
- energy leak from ECAL+HCAL

2018 run

Simulations of eZ->eZA´; A´-> invisible

ETL vs WW cross sections: Strong reduction for $m_{A'} > m_{A'}$

- GEANT4+code for A´emission in the process of e-m shower development
- WW approximation for σ(e⁻Z->e⁻ZA[´]) (Bjorken et al.'09)
- Corrections (k-factors) to WW from exact tree-level (ETL) calculations: large for higher A´masses
 - The shape of WW and ETL differential cross sections is quite similar: strongly peaked at $x = E_{A'}/E_0 \sim 1_{arXiV:1712.05706}$

Electron tagging with synchrotron radiation (SR)

Light Dark World 2019 – NA64: new results and prospects, Vienna, 12/08/2019

Active dump: shashlik ECAL

ECAL cell

- Dump: rad.-hard, tight, fast, hodoscopic, good energy resolution
- Readout WLS fibers go in a spiral to avoid E-leak and dead zones
- Transverse X-Y scan showed nonuniformity in vicinity of fibers $\delta E/E < 2 \%$
- Variation of ECAL energy in vicinity of rods $\delta E/E < 10 \%$
- Resolution $\delta E/E \sim 0.1/E^{0.5}$, δX , $\delta Y \sim 1-5$ mm
- Hermeticity scan: no potential source of background is found

e,γ punchthroughs

Light Dark World 2019 – NA64: new results and prospects, Vienna, 12/08/2019

Combined results 2016–2018, 2.84x10¹¹ EOT

12	20		10 ³
10			
8	30		<u>-</u> 10 ²
- _{HCAL} , GeV	50		
	10		. 10
2	20		
	0 20 40 60 E _{ECAL} , GeV	80 100	1
	selection criteria	efficiency	
	incoming e- selection	2016(18)	
	S _i ,tracker hits in time	0.98(0.95)	
	SRD _i in-time, SR range	0.98(0.95)	
	no large Θ_{in} angle tracks	0.95(-)	
	p momentum in range	0.80(0.83)	

The overall A´ efficiency for $m_{A'} \sim 0.001 - 0.3$ GeV and $I_e \sim (1.5-9.0) \times 10^6 e/spill \epsilon_{A'} \sim 0.69 \pm 0.09 - 0.55 \pm 0.07(2016) => 0.53 \pm 0.09$ to 0.48±0.08(2018)

Combined results 2016–2018 and projections for $\boldsymbol{\epsilon}$

arXive:1906.00176

- The search is background free
- Plans to accumulate > 5×10^{12} EOT after LS2
- A possible source of background upstream einteractions in the beamline. Currently under study.

Light Dark World 2019 - NA64: new results and prospects, Vienna, 12/08/2019

Preliminary results for the sub-MeV A' mass range

TEXONO: arXiv:1804.10777

16.

NA64: arXiv:1812.02719

Simulations for eV–MeV A´ mass range including dumping of γ -A´ oscillations in the target under development

The most stringent constraints on the γ -A' mixing strength and parameter space for the scalar and fermionic dark matter in the mass range < ~0.5 GeV. The power of the active beam dump + missing energy approach for the dark matter search.

2016–2018 results and projection for LDM DM (II)

18.

⁸Be^{*} anomaly: a new light X boson?

PRL 116, 042501 (2016)

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2016

Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson

A. J. Krasznahorkay,^{*} M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, and Zs. Vajta Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

> T. J. Ketel Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

A. Krasznahorkay CERN, CH-1211 Geneva 23, Switzerland and Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary (Received 7 April 2015; published 26 January 2016)

Feng et al, 2016

 $2 \times 10^{-4} < \varepsilon_{e} < 1.4 \times 10^{-3}$

Light Dark World 2019 – NA64: new results and prospects, Vienna, 12/08/2019

FIG. 5. Invariant mass distribution derived for the 18.15 MeV transition in ⁸Be.

X cannot be A´due to constraints from π^0 ->X γ decay:

 $\Gamma(\pi^{0} \rightarrow X\gamma) \sim (\epsilon_u q_u - \epsilon_d q_d)^2 \sim 0$ if $2\epsilon_u = -\epsilon_d \rightarrow \text{protophobic } X$ 64 ST A

Search for the a-> $\gamma\gamma$, X(16.7), A^{\prime}-> e⁺e⁻, invisible decays

Main components :

- clean 100 GeV e- beam
- e- tagging: tracker+SRD
- active dump WCAL
- ECAL, HCAL

Signature:

- 100 GeV incoming e- track
- Single shower in WCAL
- Double or single shower in ECAL
- E_{WCAL}+E_{ECAL}=E₀
- no energy in Veto and HCAL

S.N. Gninenko - NA64++ - PBC BSM WG, CERN, April 18, 2018

Sensitivity is defined by the WCAL dump length. Attempt to make it shorter by optimizing the WCAL structure: Xs carry away most of the energy, while the recoil e- is soft.

Light Dark World 2019 - NA64: new results and prospects, Vienna, 12/08/2019

NA64 μ is designed

- to search for new S,V states coupled predominantly to muon and test of $(g-2)_{\mu}$ anomaly in missing energy events from μZ interaction
- to improve NA64e senstivity to LDM in the mass range $m_{A'} >> m_e$.

Status:

- April 2019: Proposal to SPSC, CERN-SPSC-2019-002/SPSC-P-359
- **Currently:** Under discussions for M2 beam sharing between COMPASS, MUonE, NA64µ
- End of 2019: expected decision on the pilot run at M2 after LS2

Remaining low mass solution to $(g-2)_{\mu}$: Z_{μ} of $L_{\mu}-L_{\tau}$

- <u>Remarkable fact</u>: out of $U(1)_{Le}$, $U(1)_{L\mu}$, $U(1)_{L\tau}$ global symmetries in the SM models one of $L_e - L_{\mu}$, $L_e - L_{\tau}$, $L_{\mu} - L_{\tau}$ differences could be gauge. The same structure of the SM: no new fermions, still 3 generations and anomaly-free renormalizable theory (R. Foot (1991))
- New massive boson Z_{μ} from broken $U(1)'_{L\mu-L\tau}$ coupled predominantly to μ and τ $M_{Z\mu}$ could be in sub-GeV range, $Z_{\mu} \rightarrow \mu^{+}\mu^{-}$ or $Z_{\mu} \rightarrow \nu\nu$ for $M_{Z\mu}<2 m_{\mu}$

Large recent literature

- explanation of $(g-2)_{\mu}$
- mediator of new force, sub-GeV DM
- Impact on v-physics, mixing matrix
- astophysical observation (EDGES 21cm anomaly, IceCube cosmic v, ..)

New ideas for NA64µ-like experiment

- L_{μ} L_{τ} Z_{μ} M³@FNAL,arXiv:1804.03144
- Leptophilic LDM, arXiv:1807.03790
- Light scalars of DS, arXiv:1701.07437

E989 at FNAL: new result with statistics of E821 in 2019. If confirmed =>~5 σ anomaly

NA64 μ method: search for $Z_{\mu} \rightarrow inv$ in E_{miss} -events

Processes under consideration:

- $\mu Z \rightarrow \mu Z Z_{\mu}$; $Z_{\mu} \rightarrow \nu \nu$ vector case
- $\mu Z \rightarrow \mu Z a_{\mu}$; $a_{\mu} \rightarrow inv scalar a_{\mu}$, ALPs.
- $\mu Z \rightarrow \mu Z q \bar{q}$ milliQ particles
- $\mu Z \rightarrow \tau Z$ +..; τ -> $\mu v v LFV \mu$ - τ conversion

. Common signature in $(E_{\mu'}; E_{tot})$ plane

- in: 160 GeV μ track
- out: < 80–100 GeV μ track
- no energy in the ECAL, Veto, HCAL
- Sensitivity ~ g_{μ}^2 , SES $\leq 10^{-10}$

The NA64 μ detector

Main components :

- 160 GeV μ- beam, ~10⁸μ/spill.
- in μ tagging: BMS+MS1
- out μ tagging: MS2
- 4 π -hermetic system:
 ECAL+VHCAL+Veto+HCAL

- in: 160 GeV μ- track
- out: < 80–100 GeV μ- track
- no energy in ECAL, Veto, HCAL
- Sensitivity ~ g_{μ}^2 , SES $\leq 10^{-13}$
- $\Rightarrow \pi, K \rightarrow \mu\nu$ decays: $E_{\mu} < E_{\pi}$
- ♦ Detector hermeticity
- \diamond Mis-measurements of $P^{\mu}_{in,out}$
- ♦ Physical background

Total expected: < 10⁻¹¹/MOT

Light Dark World 2019 - NA64: new results and prospects, Vienna, 12/08/2019

- γZ_{μ} kinetic mixing
- Mixing $\varepsilon \sim 3eg_{\mu}/16\pi^2 \ln(m_{\tau}/m_{\mu})$
- $m_{Z'} < m_{\mu}$: $g_{\mu} = 4.8 \times 10^{-4}$, $\varepsilon = 6.8 \times 10^{-6}$
- Loophole: search for Z_{μ} with e- beams

in e⁻ Z -> e⁻ Z Z_{μ}; Z_{μ} -> invisible (similar to A´)

Complementarity of NA64e and NA64 μ : Z_{μ} < ~100 MeV should be also seen in NA64e

1801.10448

Search for high mass invisible A' with M2 muon beam

- $N_{A'} \sim N_e \epsilon^2 m_e^2 / m_{A'}^2$ Cross-section is suppressed for $m_{A'} > \sim m_u$
- An enhancement factor for $\mu \sim 10^2$ came from the ratio of the effective e- and muon target length t_{μ}/t_{e} The $t_{e} \sim X_{0}$ while for the μ case it is $t_{e} << t_{\mu}$
- NA64 μ can significantly improve limits $\frac{10^{-6}}{10^{-3}}$ for A' mass ~ 0.1- 1 GeV, a factor $10^2 10^3$ for ϵ^2 or variables y and α_D (next slide)

These new observations significantly strengthen motivation for the experimental search of the A´ and Z_{μ} with M2 muon beam

Light Dark World 2019 - NA64: new results and prospects, Vienna, 12/08/2019

arXiv:1903.07899, ETL

Combined probe of LDM with NA64e and NA64 $\!\mu$

