Machine Learning for Likelihood-Free Inference

Luc Le Pottier
University of Michigan, CERN ATLAS Group
Outline

- Project Intro
- Project Work
- Future Work
- Project Lessons
- Cultural Experiences
Project Intro

- Working under Dr. Tancredi Carli on ATLAS group data analysis
- Software developer
 - Writing tools to simplify the generation and implementation of certain analyses
- Looking for ways to measure Effective Field Theory (EFT) parameters
 - EFTs describe physics at an energy scale expanded about $1/\Lambda$, meaning physics at an energy scale $E \ll \Lambda$
- Assuming symmetry of SM we can describe any new LHC physics signatures…
 - Use the 59 dim-six operators O_o with Wilson coefficients f_o
 - Easy parameterization of many observables
 - Excellent theory-experiment interface\(^{(1)}\)

\[
\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{o} \frac{f_{o}}{\Lambda^{2}} O_{o}
\]

\(^{(1, 2, 3)}\)
Project Intro

- **Likelihood function** allows for EFT parameter calculation
 - Describes the compatibility of data with model parameters
 - must be approximated: difficult to do precisely in high-dim parameter/observable spaces

- **Current methods:**
 - Matrix Element Method, Optimal observables, naïve Parameter scans, Neural Network classification
 - All trained on event/parameters sample pairs – no extra use of particle physics structures

\[
\begin{align*}
 r(x, z|\theta_0, \theta_1) &= \frac{p(x, z|\theta_0)}{p(x, z|\theta_1)} \\
 t(x, z|\theta_0) &= \nabla_{\theta} \log p(x, z|\theta) \bigg|_{\theta_0}
\end{align*}
\]

- **New method:** training deep neural networks to approximate the **likelihood function**, using the **joint likelihood ratio** and **joint score** in loss functions.

\[
L_{ALICE} [\hat{r}(x)] = \frac{1}{N} \sum_{i=1}^{N} \left[s(x_i, z_i|\theta_0, \theta_1) \log (\hat{s}(x_i)) + (1 - s(x_i, z_i|\theta_0, \theta_1)) \log(1 - \hat{s}(x_i)) \right]
\]

ALICE Method Cross-Entropy Estimator-based loss function
Finished Work

• Using the MadMiner machine learning toolkit \((1, 2, 3)\), with an implementation of the ALICE algorithm, claimed to be one of the more 'sample-efficient' algorithms (good for testing and debugging).\(^{(2)}\)

• Problem Introduction (January)
 • Wrote a python module for testing ML algorithms on arbitrary-dimensional ‘toy’ processes
 • Validated precision results of various algorithms using the tractable likelihoods of these toy processes
 • Made clear that ALICES is a good algorithm to prototype new processes with
Finished Work

• ttH Process joint-likelihood ratio estimation (February – March)

• Measuring whether process has Charge conjugation-Parity (CP) symmetry (antiparticles + flipped coordinates)

• 2 observables, one parameter in this case
 • x_0, pseudo-scalar observable, Higgs boson in SM
 • $\Delta_t_{t\bar{t}}$ observable, the angle between the t and tbar jets
 • $\cos(\alpha)$, parameter, parameterization of CP sym.

• Promising interaction:
 • mass of constituent particles
 • ttH coupling strength

(one) Leading order Feynman
Slight Problems

• ttH CP parity parameterization is limited to the range [0, 1], with simulation benchmarks at the boundary points

• Results in strange predicted likelihood functions

• Assuming a gaussian likelihood function, extrapolated variances of log-likelihood are terrible

• Determined after hundreds of different deep neural net configurations and sample augmentations that a new statistical approach is needed

• Will likely receive attention from stats PHD in the near future
Finished Work

• Authored a python module and linux CLI utility
 • Provides a wrapper for
 • Complex environment setup for madminer/madgraph
 • Process backend setup
 • Generation and storage of a wide array of samples, models, and evaluations
 • Allows for near-instant prototyping of the `madminer` framework with arbitrarily complex processes
 • Helps a lot with finding a suitable set of ML parameters for a given process
Finished Work

- quick scripting and safe setup of large batch jobs (full control of logging/exception handling => quicker debug)
- many batch jobs to determine ideal sample augmentation ratios (generated : augmented events)
- Many integrated visualization/plotting tools
- See: good vs. poor sample augmentation
Progress thus far

Good sample augmentation

Poor sample augmentation
Future Work

- Update module to work with recently-released madminer version
- Finish (majority) of documentation
- Add 4-5 more ‘sample processes’ to demonstrate applicability of the program to arbitrary processes with minimal effort
- Perform and write up a short study on how to quickly find optimal ML parameters for a new problem (lots of research wrt this, but not much written down)

Luckily, I have until May 10th to do these things!
Project Lessons

- Software development
 - Architecture, OO design of large modules
 - Debugging in Linux environment
 - Server resource management
 - Environmental management
 - General programming skill in python/bash (~ 50k lines of code committed over 3 repos)
 - Writing, reading, and gen. management of physics and ML utilities (madgraph, pytorch, LHE/LHA files, etc.)

- BSM HEP models
 - Useful characterizations of HEP models for BSM physics
 - How to find useful parameters for these models

- Research ideas
 - Isolating important parameters in a high-dimensional system
Culture!

Zz in cully

Vallee blanche in Chamonix

Hiking in the jura
Questions?
References

