Dual-Readout Calorimetry Signal Analysis with Neural Networks

Murali Saravanan
Overview

- Dual-Readout Calorimetry Recap
- Current Results
 - Part I: Monte Carlo Simulations
 - Part II: Real Data
 - Part III: hls4ml
- Future Steps
The LHC and Calorimetry

• Calorimeters are responsible for energy measurement in ATLAS, CMS, and various particle detectors

• Hadronic and Electromagnetic Calorimetry
 - protons, pions, and fragmenting quarks and gluons
Hadronic Calorimetry

• Measure em and non-em components
 • Huge fluctuations in em component (up to 40%) on event-by-event basis

• Different calorimeter materials respond to em and non-em differently. Use response curves but this works on average
Dual Readout Calorimetry Recap

• Measure both Cerenkov and Scintillation radiation to achieve em energy resolution on event-by-event basis
 • Amount of Cerenkov/Scint light can be tweaked by materials and geometry of physical calorimeter

• Huge improvement for hadronic energy resolution, would be useful in future colliders (FCC, ILC, CLIC)
Single Channel Readout?

- Single Channel saves overhead
- Four parameters vary
 1. Ratio of Cerenkov/Scintillation Radiation (Area)
 2. Scintillation Decay Rate
 3. Photoelectron Count
 4. Digitizer Freq/Bin Number
Using NN

• NN is constant time
• Predict two parameters
 1. Cerenkov pulse area
 2. Scintillation pulse area

<table>
<thead>
<tr>
<th>Layer (type)</th>
<th>Output Shape</th>
<th>Param #</th>
</tr>
</thead>
<tbody>
<tr>
<td>dense_5 (Dense)</td>
<td>(None, 10)</td>
<td>1010</td>
</tr>
<tr>
<td>dense_6 (Dense)</td>
<td>(None, 2)</td>
<td>22</td>
</tr>
</tbody>
</table>

Total params: 1,032
Trainable params: 1,032
Non-trainable params: 0
Part 1: Monte Carlo
Simulated Data
Monte-Carlo Generation of Data

• Modify:
 • Ratio
 • 10-> 10x more area of Cerenkov than Scintillation
 • -10-> 10x more area of Scintillation than Cerenkov
 • Scintillation Decay
 • Photoelectron Count
 • Binning

• Generate a library of histograms, varying the above parameters to create different experiments
• Create many events per experiment to create needed random fluctuations
Example Pulse

- Vary Ratio between -25 and 25
- Vary Scint Decay from 15ns to 50ns
- 1k-5k photoelectrons
- 30, 100, 300 bins
- Vary digitizer freq and photostatistics
- 30 bins, 5k
Part I Conclusions

• Major dependence is on ratio and not scintillation decay time
• Higher photoelectron count gives better results
 • Gradual change over 1k-5k photoelectrons range (no tipping point)
• Higher digitizer freq ≠ better prediction
 • Low freq hides the effects of fluctuations
• Scintillation prediction is much more stable than Cerenkov prediction
Part 2: Real Data

Dual Cherenkov and Scintillation Response to High-Energy Electrons of Rare-Earth-Doped Silica Fibers

Francesca Cova,1 Marco T. Lucchini,2,3,* Kristof Pauwels,4,3,† Etiennette Auffray,3 Norberto Chiodini,1 Mauro Fasoli,1 and Anna Vedda1

1 Department of Materials Science, University of Milano-Bicocca, Via Cozzi 55, 20125 Milan, Italy
2 Princeton University, Princeton, New Jersey 08544, USA
3 EP-CMX Department, CERN, 1211 Geneva 23, Switzerland
4 Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20125 Milan, Italy
Real Data

• response of Ce-doped silica fibers exposed to electrons in the 20–200-GeV

• What does a realistic pulse look like? What is the actual ratio of C/S? Expected photoelectron count?
Average Pulse

200 GeV Pulse

[... graph information ...]

FIG. 6. Average pulse shape normalized to the number of events for Ce:SiO₂ fibers for a 20-GeV electron beam (left panel) and a 150-GeV electron beam (right panel). Back and front read-out are compared. The dashed lines are guides for the eye. phe, photoelectrons.

Photoelectron Count

- 7.5k for Cerenkov, 30k for Scintillation (ratio=-4)

Monte Carlo results in this area

• With 5,000 photoelectrons and 100 bins, possibility of less than 1% error
Real Data NN

• In progress!
• Need to consistently clean data
Part 3: Implementation on FPGAs
Intro to FPGAs

• Multiplier Units
 • Does arithmetic
• Flip Flops
 • Short term memory registers

• Wire algorithms into board
• High Level Synthesis (HLS) is the language that Xilinx FPGAs use
hls4ml

• Takes NN and creates HLS implantation that provides resource usage estimates

• Up to 6,000 parallel operations=# of multiplication units=max # of nodes and weights in NN if we aim for one clock cycle per analysis

• Can trade latency for lower resource usage

Preliminary Results

• 100 bin Model with 5ns goal
Preliminary Results

• hls4ml in general provides an overestimate of resource usage

<table>
<thead>
<tr>
<th>Summary</th>
<th>BRAM 18K</th>
<th>DSP48E</th>
<th>FF</th>
<th>LUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Expression</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>FIFO</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Instance</td>
<td>-</td>
<td>718</td>
<td>19902</td>
<td>16648</td>
</tr>
<tr>
<td>Memory</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Multiplexer</td>
<td>-</td>
<td>-</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Register</td>
<td>-</td>
<td>-</td>
<td>1766</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>718</td>
<td>21668</td>
<td>16690</td>
</tr>
<tr>
<td>Available</td>
<td>4320</td>
<td>5520</td>
<td>1326720</td>
<td>663360</td>
</tr>
<tr>
<td>Available SLR</td>
<td>2160</td>
<td>2760</td>
<td>663360</td>
<td>331680</td>
</tr>
<tr>
<td>Utilization (%)</td>
<td>0</td>
<td>13</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Utilization SLR</td>
<td>0</td>
<td>26</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

• Can prune unnecessary nodes from intermediate layer to decrease resource usage
Project Conclusions

• Dual Readout Calorimetry is promising for improving resolution of em-portion of hadronic energy on an event-by-event basis

• Neural Networks can be implemented into FPGAs for low latency inference in single channel dual readout calo
 • Small networks are adequate

• Simulated performance of NNs can be used to inform the geometry/construction of the calorimeters and the associated hardware
Project Conclusions

Single Channel Dual Readout Calorimetry can work thanks to Neural Networks
Future Steps

• Produce NN results on real data
• Look at implementation on real FPGA
Questions?