Asymptotic formulae for likelihood-based tests of new physics

A UW Journal Club review of the namesake paper, available at: https://arxiv.org/pdf/1007.1727.pdf

Outline

HYPOTHESIS TESTING IN A COUNTING EXPERIMENT

EXAMPLES

I. Overview of the general method of hypothesis testing

Type of Test	H_0	H_1
Discovery	Background	Signal
Exclusion Limit	Signal	Background

- In physics experiments, we often conduct statistical inference by means of a hypothesis test. We compare two hypotheses: a **background hypothesis** and a **signal hypothesis**. For the purposes of the test, one hypothesis is considered the **null hypothesis** H_0 , while the other is considered the **alternative hypothesis** H_1 . The test determines to what extent we can **reject the null hypothesis**.
- Depending on our labelling of the background/signal hypotheses as null/alternative, we attempt to either verify the **discovery** of a new model or **limit** the parameters of that model.

Hypothesis Testing (continued)

- Hypothesis testing proceeds as follows:
 - 1. Define H_0 (the null hypothesis) and H_1 (the alternative hypothesis).
 - 2. Choose a **test statistic** q that can quantify the level of agreement between H_0 and the data.
 - 3. Calculate q_{obs} (q of the observed data).
 - 4. Use q_{obs} to calculate a p-value, and determine whether the p-value is sufficiently small to reject H_0 .

Test Statistic

- An appropriate test statistic quantifies the degree to which the observed data follows the predictions of one hypothesis more strongly than the other.
- Most test statistics utilize a **ratio of likelihoods**. The likelihood of a hypothesis H given a dataset x is the probability of observing that dataset given the hypothesis. Mathematically, L(H|x) = P(x|H). If you parametrize H in terms of some parameters θ , then you can speak of a **likelihood** function $L(\theta|x) = P(x|\theta)$.

¹ Note that the dependence of L on x is often left implied, such that $L(\theta) = L(\theta|x)$.

p-value

- With basic probability, we can answer the question "How likely is the observed data given our null hypothesis?"
- However, what we'd *really* like to know is "How likely is data (given our null hypothesis) that is *at least* as incompatible with our null hypothesis as the observed data?" The *p*-value answers this question.
 - A test statistic q quantifies the notion of incompatibility. All we need to do is find $f(q|H_0)$, the pdf (probability density function) of q given our null hypothesis.

$$p_{H_0} = \int_{q_{\text{obs}}}^{\infty} f(q|H_0)dq$$

An illustration of the p-value using the test statistic t_{μ} and hypothesis μ (this will make sense later).

Equivalent Significance

- When conducting a search, it is often convenient to discuss the **equivalent** significance $Z = \Phi^{-1}(1-p)$ of the p-value.
 - The probability of observing a Gaussian-distributed variable Z σ s above its mean is equal to p.
- When testing for discovery, $Z \ge 5$ or $p \le 2.87 \times 10^{-7}$ is the usual threshold for H_0 rejection. For exclusion, $Z \ge 1.64$ or $p \le 0.05$ is generally considered sufficient.

Experimental Sensitivity (expected significance)

- In addition to calculating the significance for the observed dataset under our null hypothesis H_0 , it would be useful to know the median significance under H_1 . Type equation here.
- In this way, we can estimate the **sensitivity** of the experiment. If the median significance is very low, we are unlikely to reject H_0 even if H_1 is true, so our experiment is a waste of time.

$$\operatorname{med}[p_{H_0}] = \int_{\operatorname{med}[q_{\text{obs}}|H_1]}^{\infty} f(q|H_1)dq$$

An example of the p-value corresponding to the q_{μ} median significance Z of an experiment.

Approximate Distributions

- Reminder: p_{H_0} is the probability of observing data that is at least as incompatible with our null hypothesis H_0 as the observed data.
- To calculate p_{H_0} we need:
 - $f(q|H_0)$ the pdf of our test statistic q given H_0 .
- To calculate $med[p_{H_0}]$ we need:
 - $f(q|H_1)$ the pdf of our test statistic q given our alternative hypothesis H_1 .
- In practice, approximations of these distributions are used, as calculation of the exact distributions tends to be infeasible.

Control Samples

- Treat the control samples that constrain the nuisance parameters as fixed, $\pi_0(\theta)$
- Determine the distribution of q by generating the main search measurement.
- For systematic uncertainties:
 - Take control samples as the basis of Bayesian prior density $\pi(\theta)$
 - $f(q) = \int f(q|\theta)\pi(\theta)d\theta$
- Find the prior $\pi(\theta)$ by Bayes' theorem.
 - $\pi(\theta) \propto L_{\theta}(\theta)\pi_{0}(\theta)$, $\pi_{0}(\theta)$ is take as constant in many cases.

Control Samples(Continued)

At Tevatron:

- Determine the distribution of q by generating only the main search measurement. (at Tevatron)
- Nuisance parameters are constrained by Gaussian distributed estimates, the initial prior $\pi_0(\theta)$

MC:

- For a given assumed point in the model's parameter space
- Simulate both the control measurements and the main measurement.

II. Hypothesis testing in a counting experiment

The Statistical Model

- Consider an experiment resulting in measurements of a variable of interest x. The measurements collectively form a binned histogram, with n_i entries in bin i according to a Poisson distribution with $E[n_i] = \mu s_i + b_i$.
 - s_i the expected number of signal samples in bin i.
 - b_i the expected number of background samples in bin i.
 - μ the **signal strength** of the model.
 - $\mu = 0 \rightarrow \text{background hypothesis}$
 - $\mu = 1 \rightarrow \text{signal hypothesis}$
- s_i and b_i are characterized by:
 - $s_{\text{tot}} \& b_{\text{tot}}$ the total expected number of signal/background samples.
 - $f_s(x; \theta_s) \& f_b(x; \theta_b)$ pdfs of x given nuisance parameters θ_s , θ_b that describe the shape of the distributions.
- The likelihood $L(\mu, \theta)$ is then given by $L(\mu, \theta) = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-\mu s_j + b_j}$.

$$s_i = s_{\text{tot}} \int_{\text{bin } i} f_s(x; \boldsymbol{\theta}_s) dx$$

$$b_i = b_{\text{tot}} \int_{\text{bin } i} f_b(x; \boldsymbol{\theta}_b) dx$$

 1 parameters that are necessary for analysis, but are not themselves of interest. Note that b_{tot} is also a nuisance parameter.

Maximum Likelihood Estimators (MLEs)

- Given data x and a hypothesis $H(\theta)$, we might wish to know which values of θ are most likely given x. These values, denoted $\hat{\theta}$, are known as the MLEs of θ . If we know $L(\theta)$ corresponding to $H(\theta)$, then we can find $\hat{\theta}$ by setting $\frac{dL}{d\theta} = 0$, as per elementary calculus.
- MLEs are a useful way to estimate parameters of a model based on a sample. They are asymptotically (1) unbiased, (2) normally distributed, and (3) efficient estimates of the true parameters.

Profile Likelihood Ratio

• The test statistics described in the paper rely upon the profile likelihood ratio

$$\lambda(\mu) = \frac{L(\mu,\widehat{\widehat{\boldsymbol{\theta}}}(\mu))}{L(\widehat{\mu},\widehat{\boldsymbol{\theta}})}.$$

- $\hat{\mu}$ and $\hat{\boldsymbol{\theta}}$ are the MLEs of μ and $\boldsymbol{\theta}$.
- $\widehat{\boldsymbol{\theta}}(\mu)$ is the MLE of $\boldsymbol{\theta}$ conditional on μ .
- Since $L(\hat{\mu}, \hat{\theta})$ is a maximum of L by definition, $0 \le \lambda(\mu) \le 1$.
- $\lambda(\mu) \approx 1$ implies that the data supports the given μ .
- $\lambda(\mu) \approx 0$ implies that the data does not support the given μ .

Test Statistics (continued)

- As can be seen on the right, the test statistics are variants of $\lambda(\mu)$ adapted for different use-cases.
- For some of the statistics, a modified profile likelihood ratio $\tilde{\lambda}(\mu)$ is used to avoid negative values of μ being preferred.

$$\tilde{\lambda}(\mu) = \begin{cases} \lambda(\mu), & \hat{\mu} \ge 0 \\ \frac{L(\mu, \hat{\theta}(\mu))}{L(0, \hat{\theta}(0))}, & \hat{\mu} < 0 \end{cases}$$
$$\lambda(\mu) = \frac{L(\mu, \hat{\theta}(\mu))}{L(\hat{\mu}, \hat{\theta}(\mu))}$$

$$\lambda(\mu) = \frac{L(\mu,\widehat{\widehat{\boldsymbol{\theta}}}(\mu))}{L(\widehat{\mu},\widehat{\boldsymbol{\theta}})}$$

Statistic	Use	Definition
t_{μ}	two-sided interval	$t_{\mu} = -2 \ln \lambda(\mu)$
$ ilde{t}_{\mu}$	enforces positive signal	$\tilde{t}_{\mu} = -2 \ln \tilde{\lambda}(\mu)$
q_0	discovery	$q_0 = \begin{cases} t_0, & \hat{\mu} \ge 0 \\ 0, & \hat{\mu} < 0 \end{cases}$
q_{μ}	upper limit	$q_{\mu} = \begin{cases} t_{\mu}, & \hat{\mu} \leq \mu \\ 0, & \hat{\mu} > \mu \end{cases}$
${ ilde q}_\mu$	enforces positive signal	$\tilde{q}_{\mu} = \begin{cases} \tilde{t}_{\mu}, & \hat{\mu} \leq \mu \\ 0, & \hat{\mu} > \mu \end{cases}$

Asimov Dataset

- Problem: to calculate median significance, we need $med[q_{obs}|H_1]$.
 - Hard solution: $\int_{-\infty}^{\text{med}[q|H_1]} f(q|H_1) dq = \frac{1}{2}$
 - Easy solution: use "Asimov dataset."
- The Asimov dataset is defined "such that when one uses it to evaluate the estimators for all parameters, one obtains the true parameter values."
- What this means:
 - $n_{i,A} = E[n_i]$

 $med[q_{obs}|H_1] \approx q_A$

- $m_{i,A} = E[m_i]$
- In practice, the Asimov dataset can be found by Monte Carlo simulations of H_1 .

Approximate Distributions (continued)

- Approximating the likelihood ratio $\lambda(\mu)$ is the main issue in approximating the test statistic distributions.
- It turns out that $\ln \lambda(\mu)$ follows what is called a non-central chi-square distribution.
- The approximation of $\lambda(\mu)$ can be used to approximate the test statistic distributions, which in turn give the approximate significances shown on the right.
- Replacing $q \rightarrow q_A$ in the expressions for Z gives the approximate median significance using the Asimov dataset.

Statistic	Z
t_{μ}	$\Phi^{-1}(2\Phi(\sqrt{t_{\mu}})-1)$
$ ilde{t}_{\mu}$	•••
q_0	$\sqrt{q_0}$
q_{μ}	$\sqrt{q_{\mu}}$
\widetilde{q}_{μ}	•••

Exclusion Limits

- Test statistic:
 - Use either q_{μ} or \tilde{q}_{μ} (they are asymptotically equivalent: q_{μ} is generally more convenient). It follows that $Z = \sqrt{q_{\mu}}$.
- Goal: exclude μ at CL 1α (usually 95%).
- Use the approximations $Z_{\mu} = \Phi^{-1}(1 p_{\mu}) = \sqrt{q_{\mu}}$ and $q_{\mu} = \frac{(\mu \widehat{\mu})^2}{\sigma^2}$ to solve for μ s.t. $p_{\mu} = \alpha$
- Solution: $\mu = \hat{\mu} + \sigma \Phi^{-1} (1 \alpha)$
 - $\hat{\mu}$ MLE from data.
 - σ standard deviation of $\hat{\mu}$, approximated either from $V_{ij} = \text{cov}[\hat{\theta}_i, \hat{\theta}_j]$ with $\sigma^2 = V_{00}$ and $V_{ij}^{-1} = -E\left[\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\right]$, or from $\sigma_A^2 = \frac{(\mu \hat{\mu})^2}{q_{\mu A}}$.
 - Since σ depends on μ , the equation is solved numerically.

Expected Limit

- As before, we should like to know the median limit assuming the background hypothesis.
- Using the Asimov dataset for the background hypothesis (thus $\hat{\mu} = 0$) and the approximation $\sigma_A^2 = \frac{(\mu \hat{\mu})^2}{q_{\mu,A}}$, the expression $\mu = \hat{\mu} + \sigma \Phi^{-1}(1 \alpha)$ reduces to $\sqrt{q_{\mu,A}} = \Phi^{-1}(1 \alpha)$. Solve numerically for μ .
- Error bands for the median limit can similarly be found by $band_{N\sigma} = \sigma(\Phi^{-1}(1-\alpha) \pm N)$

III. Examples

Example: Shape Analysis

- In this example we take the case where you are searching for a peak in an invariant mass distribution
 - Invariant mass distribution: Distribution of Invariant mass, which is the mass in the "rest frame".
- To find a peak, you test every mass in a given range the appearance of a signal like peak could lead to rejection of the background-only hypothesis

The "Look Elsewhere Effect"

- Since we are looking at a very large range, we must take into account the "lookelsewhere" effect:
 - This is the effect that a fluctuation could occur at any mass within the range a good analogy of this is that if you are drawing hands from a deck, you will eventually draw a royal flush (or some other good hand).
- To account for the look else-where effect you divide the threshold by the number of trials to get p < threshold / number of trials
- In this case we don't have to worry about this effect because we will effectively test each mass and signal strength individually.

Scale Factor

- Signal Scale Factor: Corresponds to the strength parameter μ
- Background Scale Factor: Introduce factor called θ
 - Mean value of events given by $E[n_i] = \mu s_i + b_i$ where μ and s_i are taken to be known
 - We assume that the background terms, given by b_i can be expressed as $b_i = \theta f_{b,i}$ where $\theta f_{b,i}$ is the probability to find a background event in bin i, which is known and θ is a nuisance parameter that gives the total number of background events.

Likelihood Function

• Using the scale factors defined in the last slide, along with the likelihood function as given in equation 6 we get:

$$L(\mu, \theta) = \prod_{j=1}^{N} ((\mu s_i + b_i)^{ni}/n_i!)e^{-(\mu s_i + b_i)} \qquad \qquad L(\mu, \theta) = \prod_{j=1}^{N} ((\mu s_i + \theta f_{b,i})^{ni}/n_i!)e^{-(\mu s_i + \theta f_{b,i})}$$

• Using this likelihood function you can evaluate it and get any of the test statistics.

Test Statistic q_{μ}

- The median assumes a strength parameter of μ'
- The upper limit on μ at a confidence level of $CL = 1-\alpha$ is the value of μ for which $p_{\mu} = \alpha$

f(q_{μ} | 0) (red) and f(q_{μ} | μ) (blue) p-value of hypothesized μ shaded in green – Figure shows the value of μ that gave $p_{\mu} = 0.05$

Conclusion

- Today we had an overview of the general method of hypothesis testing, hypothesis testing in a counting experiment and an example of how likelihood functions can be modified to get test statistics
 - General Method:
 - Getting q and then determining, using the p-value if the hypothesis fits the data
 - Counting Experiment:
 - The use of the likelihood ratio in getting test statistics and "shortcuts" such as the Asimov data set
 - Shape analysis:
 - Application of these methods to find just one of the test statistics, q_{μ}
- Most importantly using these methods eliminates the need to perform lengthy MC calculation, which for the case of a discovery at 5σ significance could require the simulation of around 10^8 measurements.

Thank You

• Questions?