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I. Overview of  the general method of  

hypothesis testing



Hypothesis 

Testing

• In physics experiments, we often conduct statistical inference by means of  a hypothesis test. We compare 
two hypotheses: a background hypothesis and a signal hypothesis. For the purposes of  the test, one 
hypothesis is considered the null hypothesis 𝐻0, while the other is considered the alternative 
hypothesis 𝐻1. The test determines to what extent we can reject the null hypothesis.

• Depending on our labelling of  the background/signal hypotheses as null/alternative, we attempt to 
either verify the discovery of  a new model or limit the parameters of  that model.

Type of  

Test

𝑯𝟎 𝑯𝟏

Discovery Background Signal

Exclusion 

Limit

Signal Background



Hypothesis Testing 

(continued)

• Hypothesis testing proceeds as follows:

1. Define 𝐻0 (the null hypothesis) and 𝐻1
(the alternative hypothesis).

2. Choose a test statistic 𝑞 that can 

quantify the level of  agreement between 

𝐻0 and the data.

3. Calculate 𝑞obs (𝑞 of  the observed data).

4. Use 𝑞obs to calculate a 𝑝-value, and 

determine whether the 𝑝-value is 

sufficiently small to reject 𝐻0.



Test Statistic

• An appropriate test statistic quantifies the degree to which the observed data 

follows the predictions of  one hypothesis more strongly than the other.

• Most test statistics utilize a ratio of  likelihoods. The likelihood of  a 

hypothesis 𝐻 given a dataset 𝑥 is the probability of  observing that dataset 

given the hypothesis. Mathematically, 𝐿 𝐻 𝑥 = 𝑃(𝑥|𝐻). If  you parametrize 

𝐻 in terms of  some parameters 𝜽, then you can speak of  a likelihood 

function 𝐿 𝜽|𝑥 = 𝑃 𝑥 𝜽 .1

1 Note that the dependence of 𝐿 on 𝑥 is often left implied, such that 𝐿(𝜽) = 𝐿(𝜽|𝑥). 



𝑝-value

• With basic probability, we can answer the question 

“How likely is the observed data given our null 

hypothesis?” 

• However, what we’d really like to know is “How likely 

is data (given our null hypothesis) that is at least as 

incompatible with our null hypothesis as the observed 

data?” The 𝑝-value answers this question.

• A test statistic 𝑞 quantifies the notion of  

incompatibility. All we need to do is find 𝑓(𝑞|𝐻0), the 

pdf  (probability density function) of  𝑞 given our null 

hypothesis.

𝑝𝐻0 = න
𝑞obs

∞

𝑓 (𝑞|𝐻0)𝑑𝑞

An illustration of  the 𝑝-value using 

the test statistic 𝑡𝜇 and hypothesis 

𝜇 (this will make sense later).



Equivalent Significance

• When conducting a search, it is often 
convenient to discuss the equivalent 
significance 𝑍 = Φ−1(1 − 𝑝) of  the 𝑝-
value.

• The probability of  observing a Gaussian-
distributed variable 𝑍 𝜎s above its mean is 
equal to 𝑝.

• When testing for discovery, 𝑍 ≥ 5 or 𝑝 ≤
2.87 × 10−7 is the usual threshold for 𝐻0
rejection. For exclusion, 𝑍 ≥ 1.64 or 𝑝 ≤
0.05 is generally considered sufficient.



Experimental Sensitivity (expected significance)

• In addition to calculating the significance for 

the observed dataset under our null hypothesis 

𝐻0, it would be useful to know the median 

significance under 𝐻1.Type equation here.

• In this way, we can estimate the sensitivity of  

the experiment. If  the median significance is 

very low, we are unlikely to reject 𝐻0 even if  𝐻1
is true, so our experiment is a waste of  time.

An example of  the 𝑝-value corresponding to the 

median significance 𝑍 of  an experiment.

med 𝑝𝐻0 = න
med 𝑞obs|𝐻1

∞

𝑓 𝑞 𝐻1 𝑑𝑞



Approximate Distributions

• Reminder: 𝑝𝐻0 is the probability of  observing data that is at least as incompatible 
with our null hypothesis 𝐻0 as the observed data.

• To calculate 𝑝𝐻0 we need:

• 𝑓 𝑞 𝐻0 – the pdf  of  our test statistic 𝑞 given 𝐻0.

• To calculate med 𝑝𝐻0 we need:

• 𝑓 𝑞 𝐻1 – the pdf  of  our test statistic 𝑞 given our alternative hypothesis 𝐻1.

• In practice, approximations of  these distributions are used, as calculation of  the 
exact distributions tends to be infeasible.



Control Samples



Control Samples(Continued)



II. Hypothesis testing in a counting 

experiment



The Statistical Model

• Consider an experiment resulting in measurements of  a variable of  interest 𝑥. The measurements collectively form a 
binned histogram, with 𝑛𝑖 entries in bin 𝑖 according to a Poisson distribution with 𝐸 𝑛𝑖 = 𝜇𝑠𝑖 + 𝑏𝑖 . 

• 𝑠𝑖 – the expected number of  signal samples in bin 𝑖.

• 𝑏𝑖 – the expected number of  background samples in bin 𝑖.

• 𝜇 – the signal strength of  the model.

• 𝜇 = 0 → background hypothesis

• 𝜇 = 1 → signal hypothesis

• 𝑠𝑖 and 𝑏𝑖 are characterized by:

• 𝑠tot & 𝑏tot – the total expected number of  signal/background samples.

• 𝑓𝑠 𝑥; 𝜽𝑠 & 𝑓𝑏 𝑥; 𝜽𝑏 – pdfs of  𝑥 given nuisance parameters1 𝜽𝑠, 𝜽𝑏 that describe the shape of  the distributions.

• The likelihood 𝐿 𝝁, 𝜽 is then given by 𝐿 𝝁, 𝜽 = ς𝑗=1
𝑁 𝜇𝑠𝑗+𝑏𝑗

𝑛𝑗

𝑛𝑗!
𝑒−𝜇𝑠𝑗+𝑏𝑗 .

𝑠𝑖 = 𝑠totන
bin 𝑖

𝑓𝑠 𝑥; 𝜽𝑠 𝑑𝑥

1parameters that are necessary for analysis, but are not themselves of interest. Note that 𝑏tot is also a nuisance parameter.

𝑏𝑖 = 𝑏totන
bin 𝑖

𝑓𝑏 𝑥; 𝜽𝑏 𝑑𝑥



Maximum Likelihood Estimators (MLEs)

• Given data 𝑥 and a hypothesis 𝐻 𝜽 , we might wish to know which values 

of  𝜽 are most likely given 𝑥. These values, denoted ෡𝜽, are known as the 

MLEs of  𝜽. If  we know 𝐿 𝜽 corresponding to 𝐻 𝜽 , then we can find ෡𝜽

by setting 
𝑑𝐿

𝑑𝜽
= 0, as per elementary calculus.

• MLEs are a useful way to estimate parameters of  a model based on a sample. 

They are asymptotically (1) unbiased, (2) normally distributed, and (3) 

efficient estimates of  the true parameters.



Profile Likelihood Ratio

• The test statistics described in the paper rely upon the profile likelihood ratio 

𝜆 𝜇 =
𝐿 𝜇,෡෡𝜽 𝜇

𝐿 ෝ𝜇,෡𝜽
.

• Ƹ𝜇 and ෡𝜽 are the MLEs of  𝜇 and 𝜽.

• ෡෡𝜽(𝜇) is the MLE of  𝜽 conditional on 𝜇.

• Since 𝐿 Ƹ𝜇, ෠𝜃 is a maximum of  𝐿 by definition, 0 ≤ 𝜆 𝜇 ≤ 1.

• 𝜆 𝜇 ≈ 1 implies that the data supports the given 𝜇.

• 𝜆 𝜇 ≈ 0 implies that the data does not support the given 𝜇.



Test Statistics 

(continued)

• As can be seen on the right, the test 
statistics are variants of  𝜆 𝜇 adapted for 

different use-cases.

• For some of  the statistics, a modified 
profile likelihood ratio ሚ𝜆(𝜇) is used to 

avoid negative values of  𝜇 being preferred.

ሚ𝜆 𝜇 =

𝜆(𝜇), ො𝜇 ≥ 0

𝐿 𝜇,෡෡𝜽 𝜇

𝐿 0,෡෡𝜽 0
, ො𝜇 < 0

𝜆 𝜇 =
𝐿 𝜇,෡෡𝜽 𝜇

𝐿 ෝ𝜇,෡𝜽

Statistic Use Definition

𝑡𝜇 two-sided 

interval

𝑡𝜇 = −2 ln 𝜆(𝜇)

ǁ𝑡𝜇 enforces 

positive signal

ǁ𝑡𝜇 = −2 ln ሚ𝜆 𝜇

𝑞0 discovery
𝑞0 = ቊ

𝑡0, ො𝜇 ≥ 0
0, ො𝜇 < 0

𝑞𝜇 upper limit
𝑞𝜇 = ቊ

𝑡𝜇 , ො𝜇 ≤ 𝜇

0, ො𝜇 > 𝜇

෤𝑞𝜇 enforces 

positive signal ෤𝑞𝜇 = ൝
ǁ𝑡𝜇 , ො𝜇 ≤ 𝜇

0, ො𝜇 > 𝜇



Asimov Dataset

• Problem: to calculate median significance, we need med 𝑞obs|𝐻1 .

• Hard solution: ׬−∞
med 𝑞|𝐻1 𝑓 𝑞 𝐻1 𝑑𝑞 =

1

2

• Easy solution: use “Asimov dataset.”

• The Asimov dataset is defined “such that when one uses it to evaluate the estimators for all 
parameters, one obtains the true parameter values.”

• What this means:

• 𝑛𝑖,𝐴 = 𝐸 𝑛𝑖

• 𝑚𝑖,𝐴 = 𝐸 𝑚𝑖

• In practice, the Asimov dataset can be found by Monte Carlo simulations of  𝐻1.

med 𝑞obs|𝐻1 ≈ 𝑞𝐴



Approximate 
Distributions 
(continued)

• Approximating the likelihood ratio 𝜆(𝜇) is 

the main issue in approximating the test 

statistic distributions.

• It turns out that ln 𝜆(𝜇) follows what is 

called a non-central chi-square distribution.

• The approximation of  𝜆(𝜇) can be used to 

approximate the test statistic distributions, 

which in turn give the approximate 

significances shown on the right.

• Replacing 𝑞 → 𝑞𝐴 in the expressions for 𝑍
gives the approximate median significance 

using the Asimov dataset.

Statistic Z

𝑡𝜇 Φ−1(2Φ 𝑡𝜇 − 1)

ǁ𝑡𝜇 …

𝑞0 𝑞0

𝑞𝜇 𝑞𝜇

෤𝑞𝜇 …



Exclusion Limits

• Test statistic:

• Use either 𝑞𝜇 or ෤𝑞𝜇 (they are asymptotically equivalent: 𝑞𝜇 is generally more convenient). It follows that 𝑍 = 𝑞𝜇.

• Goal: exclude 𝜇 at CL 1 − 𝛼 (usually 95%). 

• Use the approximations 𝑍𝜇 = Φ−1 1 − 𝑝𝜇 = 𝑞𝜇 and 𝑞𝜇 =
𝜇−ෝ𝜇 2

𝜎2
to solve for 𝜇 s.t. 𝑝𝜇 = 𝛼

• Solution:

• Ƹ𝜇 – MLE from data.

• 𝜎 – standard deviation of  Ƹ𝜇, approximated either from 𝑉𝑖𝑗 = cov ෠𝜃𝑖 , ෠𝜃𝑗 with 𝜎2 = 𝑉00 and 𝑉𝑖𝑗
−1 = −𝐸

𝜕2 ln 𝐿

𝜕𝜃𝑖𝜕𝜃𝑗
, or from 

𝜎𝐴
2 =

𝜇−ෝ𝜇 2

𝑞𝜇,𝐴
. 

• Since 𝜎 depends on 𝜇, the equation is solved numerically.

𝜇 = Ƹ𝜇 + 𝜎Φ−1 1 − 𝛼



Expected Limit

• As before, we should like to know the median limit assuming the background 
hypothesis.

• Using the Asimov dataset for the background hypothesis (thus Ƹ𝜇 = 0) and 

the approximation 𝜎𝐴
2 =

𝜇−ෝ𝜇 2

𝑞𝜇,𝐴
, the expression 𝜇 = Ƹ𝜇 + 𝜎Φ−1 1 − 𝛼

reduces to 𝑞𝜇,𝐴 = Φ−1(1 − 𝛼). Solve numerically for 𝜇.

• Error bands for the median limit can similarly be found by band𝑁𝜎 =
𝜎 Φ−1 1 − 𝛼 ± 𝑁



III. Examples



Example: Shape Analysis

• In this example we take the case where you are searching for a peak in an 

invariant mass distribution

• Invariant mass distribution: Distribution of  Invariant mass, which is the mass in the 

"rest frame" .

• To find a peak, you test every mass in a given range – the appearance of  a 

signal like peak could lead to rejection of  the background-only hypothesis



The "Look Elsewhere Effect"

• Since we are looking at a very large range, we must take into account the "look-
elsewhere" effect:

• This is the effect that a fluctuation could occur at any mass within the range – a good 
analogy of  this is that if  you are drawing hands from a deck, you will eventually draw a royal 
flush (or some other good hand).

• To account for the look else-where effect you divide the threshold by the number of  
trials to get p < threshold / number of  trials

• In this case we don’t have to worry about this effect because we will effectively test 
each mass and signal strength individually.



Scale Factor

• Signal Scale Factor: Corresponds to the strength parameter µ

• Background Scale Factor: Introduce factor called θ

• Mean value of  events given by                                where µ and 𝑠𝑖 are taken to be 

known

• We assume that the background terms, given by 𝑏𝑖 can be expressed as 𝑏𝑖 = θ𝑓𝑏,𝑖 where 

θ𝑓𝑏,𝑖 is the probability to find a background event in bin i, which is known and θ is a 

nuisance parameter that gives the total number of  background events. 

E[𝑛𝑖 ] = µ 𝑠𝑖 + 𝑏𝑖



Likelihood Function

• Using the scale factors defined in the last slide, along with the likelihood 

function as given in equation 6 we get:

• Using this likelihood function you can evaluate it and get any of  the test 

statistics.

L(µ, θ) = ැ
𝐽=1

𝑁
(( µ 𝑠𝑖 + 𝑏𝑖)

𝑛𝑖/𝑛𝑖!)𝑒
−(µ 𝑠𝑖+ 𝑏𝑖) L(µ, θ) = ැ

𝐽=1

𝑁
(( µ 𝑠𝑖 + θ𝑓𝑏,𝑖)

𝑛𝑖/𝑛𝑖!)𝑒
−(µ 𝑠𝑖+θ𝑓𝑏,𝑖)



Test Statistic 𝑞µ

• The median assumes a 

strength parameter of  µ′

• The upper limit on µ at a 

confidence level of                 

is the value of  µ for which 

𝑝µ = α

f(𝑞µ |0) (red) and f(𝑞µ |µ) (blue) p-value of  

hypothesized µ shaded in green – Figure shows the 

value of  µ that gave 𝑝µ = 0.05

CL = 1−α



Conclusion 

• Today we had an overview of  the general method of  hypothesis testing, hypothesis testing in a 
counting experiment and an example of  how likelihood functions can be modified to get test statistics

• General Method:

• Getting q and then determining, using the p-value if  the hypothesis fits the data

• Counting Experiment:

• The use of  the likelihood ratio in getting test statistics and “shortcuts” such as the Asimov data set

• Shape analysis:

• Application of  these methods to find just one of  the test statistics, 𝑞µ

• Most importantly using these methods eliminates the need to perform lengthy MC calculation, which 
for the case of  a discovery at 5σ significance could require the simulation of  around 108

measurements. 



Thank You

• Questions?


