

6 GHz cavities coating status

CERN-INFN-STFC Agreement N. KE2722/BE/FCC Regular video meeting, 1st of February 2019

6 GHz cavities coating status

• Very promising results \rightarrow 4 Nb on Cu flat Q cavities coated

6 GHz cavities coating status

• Very promising results \rightarrow 4 Nb on Cu flat Q cavities coated

- Reproducibility issue \rightarrow Improvement of the surface quality is mandatory

CERN-LNL-STFC regular video meeting, 1st February 2019

Vibro tumbling

• Same concept of CBP, but vibration instead of rotation

• Already explored at LNL in 2013

High Removing Rate (around 6 µm/h)

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

Vibro tumbling

• Same concept of CBP, but vibration instead of rotation

• Already explored at LNL in 2013

- High Removing Rate (around 6 µm/h)
- Unstable system
- Low reproducibility
- Abbandoned technology

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

Unbalanced mass motor

Eccentric motor (vibration)

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

INFN

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

Vibro tumbling in action

INFN

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

Vibro tumbling parameters

- Media
- Volume
- Frequency
- Time
- Temperature

Media explored on Cu cavities

BIG SIZE MEDIA

- **1.** Allumina cones embedded in ureic resin \rightarrow high RR
- **2.** Stainless steel \rightarrow high RR but contaminate and bend cavity
- 3. SiC \rightarrow powder produced block the RR
- 4. ScotchBrite \rightarrow low RR
- 5. Teflon balls \rightarrow remove contaminants, but embedded in surface

POWDERS

- 1. $Al_2O_3 \rightarrow no \text{ effect}$
- 2. $Si_{(am.)}$ and $Si_{(crys.)} \rightarrow no$ effect
- 3. Al \rightarrow no effect
- 4. $B_4C \rightarrow no$ effect
- 5. $ZrO_2 \rightarrow$ no effect

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

Cu working protocol (3 steps)

1. Al₂O₃ Piramids (Rosler RKG 6 PQ) + Rodastel30 (wet process)

2. Cu powder 200 mesh (dry process)

3. Coconut powder (dry process)

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

Cu working protocol (3 steps) - Removing Rates

- **1.** Al_2O_3 Pyramids (Rosler RKG 6 PQ) + Rodastel30 (wet process) High RR $\rightarrow \approx 5 \ \mu m/h$
- 2. Cu powder 200 mesh (dry process)

Polishing effect (remain powders on the surface) $\rightarrow \approx 0,1 \ \mu$ m/h

3. Coconut powder (dry process)

Polishing effect (Cu powders removal effect) $\rightarrow \approx 0.3 \,\mu$ m/h

Cu working protocol (3 steps) - Treatments time

1. Al₂O₃ Pyramids (Rosler RKG 6 PQ) + Rodastel30 (wet process)

> 2 h \rightarrow foam production reduce RR and corrosion start (presence of H₃PO₄)

- 2 hours → pitting starts (Why?)
- **3. Coconut powder** (dry process) 2 hours

6 GHz cavities coating status

Volume of media

Volume, %

- Influence surface quality and RR
- Very important on Cu powders step

6 GHz cavities coating status

Temperature

- Step 1 and 3 work at room temperature
- Step 2 produce heating of the cavity \rightarrow could be use to monitorize the polishing effect

Frequency effect

- Not fully explore yet
- Qualitative speaking, RR increase with frequency
- High and low frequency may damage the vibrotumbling system
- A good compromise is 200 Hz

Results on Coupons

• Test cavity with 2 coupons

• Comparision with grinding polishing

• Roughness characterizations

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

Scratched

CERN-LNL-STFC regular video meeting, 1st February 2019

CERN-LNL-STFC regular video meeting, 1st February 2019

500 ± 60 nm

SUBU5

240 ± 60 nm

CERN-LNL-STFC regular video meeting, 1st February 2019

CERN-LNL-STFC regular video meeting, 1st February 2019

CERN-LNL-STFC regular video meeting, 1st February 2019

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

27

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

cristian.pira@lnl.infn.it

28

Results on cavities

- Results on cavities
- Comparision with grinding on cavities

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

INFN

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

INFN

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status

Conclusions and next steps

- Vibro-tumbling improve the surface finishing compare to grinding with Removing Rates comparable to CBP
- RF tests to test improvement in performance reproducibility
- Scalable to 1,5 1,3 GHz

Thank you for the attention!

CERN-LNL-STFC regular video meeting, 1st February 2019

6 GHz cavities coating status