

RT^(*) cables terminations and routing to current leads according to baseline

D. De Luca, J-Cl. Guillaume

(*) RT = Room Temperature

WP6a Integration Meeting / D. De Luca

- Electrical Circuit
- Cable Requirements
- Water Cooled Cables Specifications
- Installation Constraints
- Water Cooled Cable Layout
- Documentation
- Open Issues

Electrical Circuit

- Cable Requirements
- Water Cooled Cables Specifications
- Installation Constraints
- Water Cooled Cable Layout
- Documentation
- Open Issues

Electrical Circuit...as per Baseline

Drawn by: S. Yammine Verified by: F. R. Mateos, F. Menendez

Current Leads Connection

Legend

Electrical Circuit

Cable Requirements

- Water Cooled Cables Specifications
- Installation Constraints
- Water Cooled Cable Layout
- Documentation
- Open Issues

Main Requirements...baseline

according to converter and DFH layout

			Number of	Total	I nominal			L per	R per	Power	Cold	Cu		Nominal	Ultimate	Rated Total	
	Circuits for HiLumi	Magnet Type	circuits per	number of	_ (7 TeV)	I_ultimate	I_cable	circuit	circuit	Converter	Powering	section	Length Warm	Total Cable	Total Cable	Cable	Cable
			IP side	circuits	[kA]	[KA]	[KA]	[mH]	[mΩ]	Location	Feedbox	[mm2]	Cables [m]	Losses [kW]	Losses [kW]	Losses [kW]	Type
	Triplet Q1, Q2a, Q2b, Q3	MQXFA / MQFXB	1	4 (IR1/5)	16.5	17.82	18	255	0.264	UR	DFHX	2600	38	71.9	83.9	85.6	wcc
	Trim Q1	-	1	4 (IR1/5)	2	2	2	69	1.44	UR	DFHX	500	40	5.8	5.8	5.8	wcc
	Trim Q3	-	1	4 (IR1/5)	2	2	2	69	1.44	UR	DFHX	500	40	5.8	5.8	5.8	wcc
	Trim Q2a	-	1	4 (IR1/5)	0.12	0.12	0.12	58.5	13.372	UR	DFHX	70	52	0.2	0.2	0.2	ACC
	Orbit correctors Q2a/b - vertical	MCBXFB	2	8 (IR1/5)	1.6	1.73	2	59	1.512	UR	DFHX	500	42	7.8	9.2	12.2	WCC
olet	Orbit correctors Q2a/b - horizontal	MCBXFB	2	8 (IR1/5)	1.47	1.59	2	135	1.656	UR	DFHX	500	46	7.2	8.4	13.4	WCC
Ę	Orbit correctors CP - vertical	MCBXFA	1	4 (IR1/5)	1.6	1.73	2	109	1.728	UR	DFHX	500	48	4.5	5.2	7	WCC
er	Orbit correctors CP - horizontal	MCBXFA	1	4 (IR1/5)	1.47	1.59	2	247	1.728	UR	DFHX	500	48	3.8	4.4	7	WCC
Ē	Superferric, order 2	MQSXF	1	4 (IR1/5)	0.182	0.2	0.2	1247	9.853	UR	DFHX	95	52	0.4	0.4	0.4	ACC
	Superferric, order 3, normal and skew	MCSXF / MCSSXF	2	8 (IR1/5)	0.105	0.12	0.12	118	13.372	UR	DFHX	70	52	0.4	0.4	0.4	ACC
	Superferric, order 4, normal and skew	MCOXF / MCOSXF	2	8 (IR1/5)	0.105	0.12	0.12	152	13.372	UR	DFHX	70	52	0.4	0.4	0.4	ACC
	Superferric, order 5, normal and skew	MCDXF / MCDSXF	2	8 (IR1/5)	0.105	0.12	0.12	107	13.372	UR	DFHX	70	52	0.4	0.4	0.4	ACC
	Superferric, order 6	MCTXF	1	4 (IR1/5)	0.105	0.12	0.12	229	13.372	UR	DFHX	70	52	0.2	0.2	0.2	ACC
	Superferric, order 6, skew	MCTSXF	1	4 (IR1/5)	0.105	0.12	0.12	52	13.372	UR	DFHX	70	52	0.2	0.2	0.2	ACC
10	Separation dipole D1	MBXF	1	4 (IR1/5)	12	12.96	13	27	0.27	UR	DFHX	2000	30	38.9	45.4	45.7	wcc
D2	Recombination dipole D2	MBRD	1	4 (IR1/5)	12	12.96	13	25	0.234	UR	DFHM	2000	26	33.7	39.4	39.6	wcc
	Orbit correctors D2	MCBRD	4	16 (IR1/5)	0.5	0.54	0.6	600	1.08	UR	DFHM	400	24	1.2	1.6	1.6	ACC
	іпаіvіацану powerea quaa Q4 (1.9K)	MQY	۷	8 (IK1/5)	4.5	4.80	b	/4	0.65	КК	DERF	800	28.5	۷۵.4	30.8	40.8	wcc
Q	Orbit correctors Q4 (1.9K)	MCBY	8	32 (IR1/5)	0.088	0.1	0.12	5270	tdb	RR	DFBL/Local Powering						ACC
	Individually powered quad Q5 (1.9K)	MQY	2	8 (IR1/5)	4.51	4.88	6	74	0.6	RR	DFBL	800	26.5	24.6	28.6	43.2	WCC
Q5	Orbit correctors Q5 (1.9K)	MCBY	6	24 (IR1/5)	0.072	0.08	0.12	5270	tdb	RR	DFBL/Local Powering						ACC
	Individually powered quad Q6 (4.5K)	MQML	2	8 (IR1/5)	4.31	4.66	6	21	0.47	RR	DFBL	800	20.7	17.6	20.6	34	WCC
Q6	Orbit correctors Q6 (4.5K)	МСВС	2	8 (IR1/5)	0.08	0.09	0.12	2840	tdb	RR	Local Powering						ACC
_	11T dipole, MBH	11T dipole, MBH	-	2 (IR7)	11.85	12.798	13	15734									
111	Trim circuit	-	-	2 (IR7)	0.25	0.25		127.1	15	TZ76	Local Trim Powering	1200	1000	0.94			ACC

Cable Type Selection

- Based on the requirements shown before
- Taken into account the rated current of cables (I_{cable})
 - Constraints: decrease power losses to minimise heat dissipation
 - → If $I_{cable} \le 600 \text{ A} \rightarrow \text{Standard air cooled cable (ACC)}$
 - \rightarrow If I_{cable} > 600 A \rightarrow Water cooled cable (WCC)

Intensity	Туре		
120 A	ACC		
200 A	ACC		
600 A	ACC		
2 kA	WCC		
13 kA	WCC		
18 kA	WCC		

Cable Section Selection

ACC section selection: norm NF C 15-100 assuming

- three cable layers (0.73 of I_{cable r}*)
- \geq 9 cables touching on cable ladders (0.78 of $I_{cable r}^*$)
- \rightarrow Resulting factor of 0.57 of I_{cable r}*
- WCC section selection: technological constraints
 → LHC and other experiences at CERN
 - 500 mm² rated at 3.5 kA \rightarrow 7 A/mm²
 - 1300 mm² rated at 8 kA → 6.2 A/mm²
 - 2000 mm² rated at 13 kA → 6.5 A/mm²

* I_{cable r}: rated current of a single cable without taking into account installation reduction factors

Cable Proposal by EN-EL...baseline

Intensity	Section [mm ²]	Туре	
120 A	70	ACC	
200 A	95	ACC	
600 A	400	ACC	
2 kA	500	WCC	
13 kA	2000	WCC	
18 kA	2x1300	WCC	

Remarks

- Standard ACC are well known at CERN
- Further studies focused on WCC

- Electrical Circuit
- Cable Requirements
- Water Cooled Cables Specifications
- Installation Constraints
- Water Cooled Cable Layout
- Documentation
- Open Issues

Introduction to WCC's

WCC Technologies

Cable bundle crimped on the lug: WCC without spring (FLOHE, 2000mm²)

CERN

Cable bundle braised on the lug: WCC with spring (BRAR, 2000mm²)

Main WCC Suppliers in Europe

- Three main suppliers in Europe
- Relevant information taken from suppliers catalogues
 - Suppliers usually provide cables with non-standard sections

	FLOHE	BRAR	GECSA
	Standard	Standard	Standard
	Sections [mm ²]	Sections [mm ²]	Sections [mm ²]
	500	900	2500
	800	1200	
	1000	1500	No cables below
	1300	1800	2500 mm ²
	2000	2100	
		<u></u>	
VCC with crimp	n cable bundle bed on lug		WCC with cable bu braised on luc

LHC WCC Specifications

Cross-section	Nominal	Leakage	DC voltage test	
[mm ²]	current [kA]	current [µA/m]	level [kV]	
500	3.5	10 @ 3.0 kV	3	
800	6.0	20 @ 1.5 kV	3	
1000	8.0	20 @ 1.5 kV	3	
1300	8.0	30 @ 1.5 kV	3	
2000	13.0	40 @ 3.0 kV	3	

Normal usage					
Voltage level	500 V DC				
Highest transitory voltage	500 V				
Operating temperature (hose)	50 °C				
Cooling water pressure in operation	16 bar				
Rated pressure	24 bar				
Water pressure drop	< 2 bar				
Water speed	< 2.5 m/s				
Maximum input water temperature	28 °C				
Maximum delta T (water in/out)	15 K				

LHC WCC Installation Example: DFBAK.5L6

6 kA 1000 mm²

- Electrical Circuit
- Cable Requirements
- Water Cooled Cables Specifications
- Installation Constraints
- Water Cooled Cable Layout
- Documentation
- Open Issues

Dimensional Constraints

Intereitu	Section	h	r	Ext. Diam.	
intensity	[mm ²]	[mm]	[mm]	[mm]	
18 kA	2x1300	500	800	2x95	
13 kA	2000	500	800	115	
6 kA	1000	500	700	95	
2 kA	500	500	500	70	
600 A	400	300	300	36	
200 A	95	200	200	25	
120 A	70	150	150	22	

most significant constraints

Accessibility

- Accessibility to WCC support (installation & maintenance)
- Space needed for installation
 - Large bending radius
 - Manipulation of the cable
 - Demineralised water infrastructure
- Cable installation to be done before placing DFH's

Mockup DFB (LHC installation)

Mockup power converters (LHC installation)

- Electrical Circuit
- Cable Requirements
- Water Cooled Cables Specifications
- Installation Constraints
- Water Cooled Cable Layout
- Documentation
- Open Issues

Power Converter and DFHX Layout (1/2)

Proposed layout with max 2 cables per current lead

Power Converter and DFHX Layout (2/2) Front view D1 Q1 -Q3 HODOTHE TTTC CB CENTE UX EL DFHX Top view

Cable tray positioning constraints:

- Depending on converter/DFH alignment
- Maintain current leads accessible and removable (LHC)
- Cables shall not exert mechanical stress on the current leads when connected
- \rightarrow cable trays are not aligned in order to fulfill the constraints

21

Side view

DFH Interface for 3 Cables

- 3 cables per current lead at DFHX
 - 2x1300 mm²
 - 1x500 mm²

Applied solution for LHC TOTEM 2 cables per current lead

HL-LHC: Solution 1

HL-LHC: Solution 2

Not to be used as discussed with Jerome Feiter WP6a Integration Meeting / D. De Luca

DFHX – 3 cables per current lead

Current Lead Interface for WCC Cables

Constraint: Same Interface with Current Lead

WCC 2000 mm² Lug FHWI 2000C

WCC 1x2000 mm²

Current Lead dimensions (WxH) 83 x 242 mm

Current density 0.89 A/mm²

10 Ø11 25 \bigcirc \bigcirc 40 \bigcirc \bigcirc 40 242 \bigcirc \bigcirc 40 \bigcirc 45 \bigcirc 83

 $S_{Lead} = 20086 \text{ mm}^2$

18kA

WCC 2x1300 mm²

Proposed solutions to be confirmed after integration study

WCC 1300 mm² Lug FAA 1300

Current Lead Interface for WCC Cables

Current Lead Interface for WCC Cables

WCC not on the same plane

- 18kA + 2kA (TRIM)
 - WCC 2x1300 mm² +1x500 mm²

Current Lead dimensions (WxH) 83 x 242 mm

Current density 0.89 A/mm²

$$S_{Lead} = 20086 \text{ mm}^2$$

Proposed solutions to be confirmed after integration study

Current Leads / Converters Arrival of cables on equipment

I – Vertical on Current Leads

Requires Suspension / Supports to avoid stress on current lead

II – Vertical on Converter Bus Bar

Dedicated Cable tray Support (avoid damage of the hose)

Current Leads / Converters Interface for WCC Cables

III – Horizontal on Converter busbar

- Less stress on bus bar
- Cable need space on Converter side
- No Suspension / Support from top
- Plates between Converter and cables

IV - Inclined on current Leads

- Reduce stress on current leads
- Suspension / Support
- Reduce space between Current lead and vault
- Possible Angle 30°

- Electrical Circuit
- Cable Requirements
- Water Cooled Cables Specifications
- Installation Constraints
- Water Cooled Cable Layout
- Documentation
- Open Issues

LHC DC-Scheme Example: Point 5 Left

HL-LHC DC scheme ongoing

IL-LHC PROJE

WP6a Integration Meeting / D. De Luca

LHC Equipment Layout Example: RR53

Existing Relation between Databases: Example of 2 Cables Installed at LHC RQ5.L5

Technical database - Layout Database

HILUNI CERN

- Electrical Circuit
- Cable Requirements
- Water Cooled Cables Specifications
- Installation Constraints
- Water Cooled Cable Layout
- Documentation
- Open Issues

Open Issues

- Sections Optimised?
 - Cables adapted to electrical circuit parameters ?
 - Current profile ?
 - Other constraints ?
- Position and size of DFH's?
 - For further studies on cabling → details on DFH's and power converters necessary (exact position, connection technology)
- Separator (Disconnector) ?

First Attempt of Separator Location (1/2)

HL-LHC UR-section

First Attempt of Separator Location (2/2)

Possible to locate separators on top of current leads?

Open Questions (?)

1) Decision about circuit separators

- Are they needed?
- What model, which size (technical specifications)
- Adaptation to cable connection constraints: Interfaces/adaptation of standard model?
- For commissioning of DC-circuits short-circuit test: How to integrate separator in the test?
- 2) How to connect WCC's to separator?
 - Allowable weight of cables on separator?
 - Space for WCC & water flexibles sufficient?
 - Accessibility to WCC guaranteed during and after installation?
- 3) How to support/fix separator?
 - Possible conflict with WCC accessibility?

Thank you for your attention!

Additional Slides

Cable Bending Radius Dependence

- External diameter
- Hose thickness
- Hose material and constitution
- Applied water pressure
- Cable section
- Wire section
- Way of winding wires to a bunch
- Winding step (distance per turn of wire/bunch)
- Technology: spring/no spring

