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Short GRBs and Long GRBs
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Bimodal distribution of GRB durations

BATSE 4B Catalog
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Origin of short GRBs

1. Compact binary (NS-NS, NS-BH) merger

2. Giant flare of soft gamma repeater

3. Others ?




Standard model of typical GRBs:

Relativistic jets from accretion disk around BH.

=>Dissipation of kinetic energy.
=Prompt GRBs and subsequent

afterglows.

I'~10

radio~X-ray
afterglow




Energy conversion in HE
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GRB 050509b: short GRB from the e'lliptical galaxy"? '
=> hke]g from NS-NS merger?

“cRB 050500 % ™ O —> Gravitational wave detection

. Keck /LRIS R-band Imaging

e . ~ will be a smoking gun.

; XRT Error Circle ¢
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GW 170817/ GRB 170817A /AT 2017gto / SSS17a/ DLT17ck

GW, short gamma-ray burst, UV/opt/IR macronova, and radio~X afterglow.
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GW 170817 & S-GRB 170817A

T=0 : GW 170817
NS-NS merge: inclination angle ~25 deg.

T =1.7 sec : short GRB 170817A.

very weak gamma-ray emission ( ~ 10 x typical S-GRBs)
=> off-axis jet emission, or cocoon emission?

T ~ 10 hr : kilonova (macronova) at IR/optical/UV.

=> r-process elements synthesized.

T ~ 10~10%day : Afterglow at radio~X-ray.
=> relativistic jet (I' ~ 4 at T~10? day, but initial I unknown).
why rising up to ~10? day? (structured jet? cocoon?)



GRB 170817A 1s intrinsically under-luminous, less-energetic.

Ep- Eiso for short GRBs
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Fig. 10.— Ei, as a function of E, in the burst frame for a sample of sGRB taken from
Zhang et al. (2009). The red star is GRB 170817A. The solid line is the Spearman linear fit
together with its 20 confidence level.



Event rate of GRB 170817A —like GRBs ~ 200 yr -! Gpc™

sGRB event rate density. The abnormally low luminosity and extremely small
distance of GRB 170817A suggest that the actual event rate density of short GRBs is
large. With one detection, one can estimate the local event rate density pg (grp Of
short GRBs through

Qcem oM
NSGRB — B4ﬂ_ & pO,sGRB Vmax = 1. (3)

The field of view of GBM is approximatively taken as full sky with Qgpym =~ 47.
The working time of GBM is taken since 2008 with a duty cycle of ~50%, so that
Toem =~ 4.5 yrs. The maximum volume a telescope can detect for this low-
luminosity event is Vi = 47D; . /3. We simulate a set of pseudo-GRBs by
placing GRB 170817A to progressively larger distances, and find that the signal
would not be detectable at 65 Mpc (Supplementary Note 4; Supplementary Fig. 8).

Taking this distance as Dy ,,,.x, we derive the event rate density of sGRBs°®

poscrs (Liso>1.6x 10" ergs ™) = 190756 Gpe > yr (4)

cf. Event rate density for NS-NS mergers ~ 1100"230° Gpc > yr*

Zhang et al. 2018
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Rate density & Luminosity function
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Which do you like?
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Similar to GRB 980425/SN1998bw ?
The low-luminosity (long) GRB 1s the sub-class of LGRB.

Ep(1+z) vs. z
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The low-luminosity (long) GRB 1s the sub-class of LGRB.
Ep(1+z) vs. Eiso
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Observed low y-ray luminosity of short GRB 170817A:
Two different ways of thinking

(1) GRB 170817A = (intrinsically) luminous short GRB
GRB 170817A 1s the same as sGRBs detected so far.
Just the viewing angle is different.

Apparently luminous short GRBs so far 1s seen on axis,
while GRB 170817A 1s viewed off-axis (Ioka & Nakamura,18).
=> All short GRBs detected so far = NS-NS merger

(2) GRB 170817A = (intrinsically) under-luminous GRB
GRB 170817A 1s different from short GRBs so far, but

some of them (whose distance 1s unknown) may be the same
as GRB 170817A. (e.g., Kaliwal et al. 2018),
=>new sub-class of short GRBs !

e.g., NS-NS or NS-BH merger ??? others ???



Relativistic beaming and Doppler effects
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Off-Axis Jet Model

The X-ray flashes (and the soft GRBs) are the typical GRBs observed from off-
axis viewing angle. (loka & Nakamura 02; Yamazaki, loka & Nakamura 03,04,05)
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« Other sGRBs T tx
® GRB 170817a i
® GRB 170817a on axis
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Figure 4. Location of GRB 170817A in the E, and E,;, plane, from
Savchenko et al. (2017) and LIGO Scientific Collaboraton & Virgo
Collaboration et al. (2017). Also shown is the location if GRB 170817A were
on-axis under the assumption of a misaligned, sharp-edged jet. This assumes a
Lorentz factor of I' = 50 and I'(6,,c — 6p) = 5 (Section 4.2). The data for the
other SGRBs are taken from Tsutsui et al. (2013) and D’Avanzo et al. (2014).




GRB170817A = Off-axis jets ?
Relativistic jets produce gamma and radio emission

AN
Radio
emission o
. ngj Decelerating jet
LSS interacts with ISM
=> radio

Rela.tivistic «‘(ég y-rays

jet

Dynamical =
ejecta

(B) Off-axis jet
SGRB and afterglow Mooley et al. (2018)



Alternative: Cocoon emission?

Cocoon is produced when the jet penetrates into dynamical ejecta.
(Nakar, Piran, Hotokezaka,"**)

Radio
L ‘_.e:rr?l_s.s-lon Cocoon interacts with ISM
ISME: s z-';;i{-l-;';i;li;’.:»f;% ~ =>radio afterglow
y = 2-3

ég; y-rays Shock breakout

=> gamma rays (sGRB)

Cocoon

Dynamical
ejecta

(C) Choked jet
Cocoon y-rays

and afterglow Mooley et al. (2018)



3.5 s after merger
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Kasliwal+2017, Science

Fig. 6. Snapshots from a
hydrodynamic simulation of a
cocoon generated by a choked jet
with emission consistent with
EM170817 (see (10) for details).
The left half-plane is color-coded by
logarithmic energy density (erg cm™
3) and depicts the energetics. The
right half-plane is color-coded by
logarithmic four-velocity (I') and
depicts the kinematics. The
observer is at an angle of 40°, the

gjecta mass is 0.1 Mo and the jet
luminosity is 2.6 x 10 erg s™. Based
on this simulation, a bolometric light
curve is calculated and shown in Fig.
2. (A) This snapshot is taken at 3.5
s, shortly after the jet injection
stops. The jet is fully choked by 4s.
(B) This snapshot is taken at 10 s
when the cocoon breaks out. The
breakout radius is 2.4 x 10" cm
which corresponds to 8 light-
seconds. Thus, the delay between
the observed y-ray photons and the
NS-NS merger is the difference in
these times, 2 s. The Lorentz factor
of the shock upon breakout is
between 2 and 3.



Just after LIGO press release (2017/10/17),
Many papers concluded scenario (1)
(GRB170817 = luminous short GRB jet viewed off-axis).

on-axis GRB orphan X-ray,

‘“"om'f\j radio afterglo !
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Did GRB 170817A arise from Ultra-relativistic jets
as ordinary short GRBs detected so far?

l

Afterglows 7?7



Off-axis Afterglows

Y~ 50 Granot

Observed light curves have
a rising part at 0.1-10 days.




Flux density @ 1 keV (m]y)
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either an off-axis jet or a cocoon

75 papers (Nature : 6, Science : 7) in 1 day !!
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~2018.6 : Superluminal motion detected by VLBI !
Jet (> T 94> P,,= 4 ) 18 suggested.
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~2018.6 : Superluminal motion detected by VLBI !
Jet (> T 94> P,,= 4 ) 18 suggested.
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Flux Density (u)y)
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~2018.11 : Radio still declines (~ ¢ ->?):
signature of (decelerating) jet ?

Light curve decay (¢ ->?) and spectral slope (v -0->%) are

consistent with decelerating jet with electron index, p ~ 2.2.
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~2018.8 : Either Cocoon or jet model can explain
the observed afterglow light curves.
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Motivation of our study

(Typical short GRBs arise from relativistic jet.)

Under-luminous short GRB 170817A
1s emission from off-axis relativistic jet (I'~100) ?
(Is 1t the same as sGRB detected so far?)
(The origin of sSGRBs 1s NS-NS merger?)

4

Detection of the counter-jet emission may be
the evidence for the relativistic jet.



Yamazaki, Ioka, Nakamura, PTEP (arXiv: 1711.06856)
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Prompt emission from the counter jet of a
short gamma-ray burst

Ryo Yamazaki'*, Kunihito Ioka2, and Takashi Nakamura®

1 Department of Physics and Mathematics, Aoyama-Gakuin University, Kanagawa 252-5258, Japan
2 Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,
Kyoto 606-8502, Japan
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The counter jet of a short gamma-ray burst (sGRB) has not been observed yet, while
recent discoveries of gravitational waves (GWs) from a binary neutron star (NS) merger
GW170817 and the associated sGRB 170817A have demonstrated that off-axis sGRB
jets are detectable. We calculate the prompt emission from the counter jet of an sGRB
and show that it is typically 23-26 magnitude in the optical-infrared band 10-103
sec after the GWs for an sGRB 170817A-like event, which is brighter than the early
macronova (or kilonova) emission and detectable by LSST in the near future. We also
propose a new method to constrain the unknown jet properties, such as the Lorentz
factor, opening angle, emission radii and jet launch time, by observing both the forward
and counter jets. To scrutinize the counter jets, space GW detectors like DECIGO is
powerful by forecasting the merger time (< 1 sec) and position (< 1 arcmin) (~ a week)
before the merger.

Subject Index E32, EO01, E02, E37



Counter-jet Emission

Relativistic forward/counter jets
emitatr, <r< kr, (kKk>1).

Counter jet

Observer

Forward jet A

Yamazaki, loka, Nakamura, arXiv: 1711.06856



Typical observed frequencies

Observed frequency : v 4,.=v,/rv(1-Bcos@ ,)

Forward jet :
8,~0 =v, ,~7rv,~ 200keV

Counter jet :
O .~ =>Vyp~Vy/ ¥V ~5¢eV

Counter jet appears 1n optical bands.



Observed flux from relativistically moving jets:

Ry =y [ o [ an [T e

Emissivity in comoving frame :

(e t) = A f(W)r —ro — Be(t — to)]
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R-band light curves from counter jet (40 Mpc)
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Fig. 1  Light curves of counterjet emission in the r-band for fiducial parameters (y = 100,
Af = 20°, hyrhy =500keV, 79 =1 x 102 cm, ap = —1, fg = —3,s = 1, tg = 19 /cf, k = 1.3,
and Eigo on = 8.2 X 10%erg) with varying 6, (= 0°, 20°, 30°, and 40°, from right to left). The
source is located at D = 40 Mpc.



Too early?

Counter jet optical emission
~23mag in a few minutes from

GW. => difficult to be observed
-

by current telescopes.
No problem!

Seto et al. (‘01),
Takahashi & Nakamura (‘03)

DECIGO/BBO detects GWs
1-10yrs before LIGO.
— The moment of
NS-NS merger can be
predicted.
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FIG. 1. Sensitivity (effectively S/N = 1) for various detectors
(LISA. DECIGO, LIGOIIL, and a detector 10> times less sensitive
than DECIGO) in the form of A, (solid lines). The dashed
line represents evolution of the characteristic amplitude /4. for
NS-NS binary at z = 1 (filled triangles: wave frequencies at
I and 10 yr before coalescence). The dotted lines represent
the required sensitivity for detecting stochastic background with
Qgw = 1071% and Qgw = 1072° by 10 yr correlation analysis
(S/N = 1).
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ET (=Einstein Telescope) will also detect GW ~10-20 hrs before the merger.

20.0hrs 2.0hrs 16 min

Akcay et al. 2019
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Fig. 1. 14My, - 1.4M, inspiralling BNS
systems sweeping across the sensitivity band
of Einstein Telescope’s C configuration (thick
red curve). The solid (black), dotted (blue),
dashed (green), and dot-dashed lines (gray)
lines are the redshift-corrected GW strains,
2 /fHgr, at luminosity distances of D
100, 200, 400, 600 Mpc, respectively. The verti-

50 100
GW frequency (Hz)

cal lines with correspondingly identical patterns
(colors) mark the redshifted ISCO frequencies
(1+2)! fisco at which point we terminate each
inspiral. As the true ISCO frequency is likely
larger than fisco (Marronetti et al. 2004), the
inspirals would continue to nearly 2kHz indi-
cated by the faded lines in the plot. We also
show the sensitivity curves for Cosmic Explorer

10

200

(blue) and KAGRA+ (brown) with the solid
curves representing their RMS-averaged sensi-
tivities and the bottom of each shaded region,
the maximum sensitivities. The faint gray curve
represents the sensitivity of Advanced LIGO
during GW170817. The upper horizontal axis
gives the time to merger for a BNS at 100 Mpc.



Even LIGO will detect ~10?%sec before the final merger ???

Cannon et al. (2012)
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Figure 1. Expected number of NS-NS sources that could be detectable by
Advanced LIGO a given number of seconds before coalescence. The heavy
solid line corresponds to the most probable yearly rate estimate from Abadie
et al. (2010a). The shaded region represents the 5%-95% confidence interval
arising from substantial uncertainty in predicted event rates.
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Figure 2. Area of the 90% confidence region as a function of time before
coalescence for sources with anticipated detectability rates of 40, 10, 1, and
0.1 yr~'. The heavy dot indicates the time at which the accumulated S/N
exceeds a single-detector threshold of 8.



Summary

Ref: Yamazaki et al., PTEP (arXiv:1711.06856)
A0 =20 deg, 6,=30 deg (Ioka & Nakamura 2017)

Jet bulk Lorentz factor: y= 50 ~100
Emission radius 7, = 1-3 x 10"?cm

=>

Counter-jet optical emission:
R =22-24 mag (at D = 40 Mpc) at a few minutes from GW.



