Multiplicity of the first stars from machine learning-based classification of stellar fossils

Tilman Hartwig

with Miho Ishigaki & Naoki Yoshida

Geneva, September 10th

Star formation after the first SNe

Star formation after the first SNe

Mock Observations from Theoretical Data

15M_{sun} Supernova:

Element	С	Ν	0	•••	Fe		C/Fe
Mass	X	5	X	•••	2		5

20M_{sun} Supernova:

Element	С	Ν	0		Fe	C/Fe
Mass	6	4.5	X	•••	3	2

15M_{sun} Supernova + 20M_{sun} Supernova

Element	С	Ν	0	•••	Fe	C/Fe
Mass	16	X	X	•••	5	3.2

data from Ishigaki+18

Tilman Hartwig

Data

Classification in 2D

Tilman Hartwig

Data

Machine-Learning Based Classification of EMP Stars

Decision Trees

Feature Importance

Results

Multiplicity of the First Stars

Tilman Hartwig

- ▶ 80% mono
- 10%multi
- Poisson Statistics: p(1)=0.8, p(2)=0.1
- 0.3 SNe per halo
- ~1.5 Pop III stars per minihalo

Results

Only 0.3 SNe per PopIII-forming minihalo? **1 SN EMP stars: Interpretation: 1 SN NO EMP stars:** many SNe **Interpretation: No SN?**

We obtain Information about SN explosion energies instead of number of SNe? (Chiaki+18)

Discussion

Multiplicity of the First Stars: Interpretation

How efficient is fragmentation in metal-free gas (Wei Ting's talk, Susa+19)?

- What is the star formation efficiency (stellar mass per halo mass) in the first galaxies? Contribution to Reionization (Anne's talk)?
- ▶ What is the **binarity** of PopIII stars?

Discussion

Peculiarity of CEMP stars?

Discussion

Conclusion

- First observational confirmation of the multiplicity of the first stars: important to understand their contribution to, e.g., reionization, 21cm signal, formation of first supermassive black holes, binary black hole mergers,...
- Feature importance identifies most informative elements and therefore helps to optimise upcoming surveys.
- Caveat: we only trace PopIII stars that allow for subsequent EMP star formation. Making a virtue of necessity: this allows to constrain the coupling efficiencies of PopIII SNe to ISM.
- Code will be made **public**.

