Origin of CEMP-no morphology in the Milky Way halo
(A holistic approach)

Jinmi Yoon
Department of Physics and JINA-CEE
University of Notre Dame, USA

Collaboration with
Timothy Beers, Sarah Dietz, Vinicius Placco, Devin Whitten (Univ. of Notre Dame),
Y. S. Lee (Chungnam Nat’l Univ., Korea), Di Tian (REU student from Xi’an Jiaotong
Univ., China)
Nucleosynthetic origin of CEMP-no Stars
Halo CEMP Morphology – A(C)-[Fe/H]

- Distinct 3 CEMP groups
 - Group I: CEMP-s (majority) CEMP-no (~13%)
 - Group II: CEMP-no
 strong correlation of A(C)-[Fe/H]
 - Group III: CEMP-no
 no correlation of A(C)-[Fe/H]

Halo CEMP Morphology – A(Na, Mg)-$[\text{Fe/H}]$

Group II CEMP-no
★BD+44 493

Group III CEMP-no
★HE 1327-2326

Origin of Group I CEMP-no

- GI CEMP-no and G III have a higher binary fraction than G2 \(\rightarrow\) mass transfer?

- But G I CEMP-no and G III CEMP-no have similar A(Ba) and lower Ba (\(>\sim 4\) dex) from G I CEMP-s

→ Perhaps different nucleosynthetic origin from the rest of CEMP-no stars

→ multiple Faint SNe or spinstars contribution – favorable?
Host galactic environments of CEMP-no Stars (Accretion origin)
Another Perspective

A(X), [X/H]

X : nucleosynthesis
H : Galactic formation / star formation / metal-mixing

Reflecting the dilution of stellar yields due to mixing with pristine interstellar medium
(Galactic/ natal environments)
CEMP groups of the dwarf galaxies

Yoon, Beers, Tian, & Whitten (2019)
Accretion origin

- **Distinct 3 CEMP groups**
 - **Group II: CEMP-no**
 - Strong correlation of A(C) - [Fe/H]
 - Formed in more massive dwarf galaxies (classical dSph-like galaxies)
 - **Group III: CEMP-no**
 - No correlation of A(C) - [Fe/H]
 - Formed in least massive dwarf galaxies (ultra-faint dwarf (UFD)-like galaxies)
 - **Group I: CEMP-s (majority)**
 - CEMP-no (~13%)
Yoon, Beers, Tian, & Whitten (2019)

Accretion origin

- Distinct 3 CEMP groups
 - Group I: CEMP-s (majority)
 - CEMP-no (~13%)

Based on the morphological Connection between the halo CEMP-no Group I and 3 and dwarf galaxy Group3,

Halo Group I CEMP-no stars could have the same origin with the Group III CEMP-no stars
Origin of Group I CEMP-no

Yoon, Beers, Tian, & Whitten (2019)
CEMP Fractions

<table>
<thead>
<tr>
<th></th>
<th>UFDs</th>
<th>dSphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<[\text{Fe}/\text{H}]>$</td>
<td>-2.69</td>
<td>-1.88</td>
</tr>
<tr>
<td>$<\text{A(C)}>$</td>
<td>6.33</td>
<td>6.49</td>
</tr>
<tr>
<td>CEMP frequency</td>
<td>~28%</td>
<td>~3%</td>
</tr>
</tbody>
</table>

See e.g., Salvadori+15

Data: literature data, SAGA database

Yoon, Beers, Whitten, & Tian(2019)
Kinematic origin of CEMP Stars
Kinematical Analyses

- Higher fraction of **prograde** stars among **CEMP-no** stars (G1, G2 and G3)

- G3 + G1 **CEMP-no** stars share similar V_ϕ range \to **similar** kinematic origin

- G3 + G1 **CEMP-no** may have **different origin** from the most of **G2 CEMP-no** stars

NMP ~ 500 stars
CEMP ~ 180 stars

V_ϕ = 0
Kinematical Analyses

- **CEMP-s** stars and some of the **G2 CEMP-no** stars have the plume feature → Gaia Enceladus/Sausage event.

- Also, there are stars with **prograde** motion among **G2 CEMP-no** and **G3** → **minor accretion**.

NMP ~ 500 stars
CEMP ~ 180 stars
Inclination angle vs. Eccentricity

0 = prograde in-plane, 90 = polar orbit, 180 = retrograde in-plane

- G3 CEMP-no is different from the rest of them
- Three (\(\nu\) Polar ~ another merger?) different preferred orbits among others
- Carbon-normal (NMP) share some orbits with G2 CEMP-no, however, G2 has more stars close to polar orbit
- Retrograde NMP have very eccentric orbit, while G2 retrograde stars rather low eccentricity.
- G2 CEMP-no retrograde share the same region of CEMP-s retrograde
Future Work

• Detailed abundance analysis of G I CEMP-no and Carbon-normal stars

• Theoretical modeling needed to explain the origin of G I/G3 CEMP-no

• Look for signature of binary mass transfer

• More CEMP stars from the dwarf galaxies

• Further understanding of kinematical analysis (is there clear separation among carbon-normal if G 2 does not exist?)

• CEMP stellar pipeline for very cool stars
CEMP-no morphology

- multiple nucleosynthetic pathways for CEMP-no stars
- star forming and galactic environment
- possible accretion origin
- Mass of host galaxies is important for CEMP formation/fraction.
- Kinematic origin -- each class of stars have complex accretion history
 - CEMP-no stars have preferentially prograde motion.
 - A substantial fraction of CEMP-no stars have polar orbits indicates another merger event?

- Thank you!
Impact of masses of galactic environment

Table 1. Characteristics of Group II and Group III CEMP-no Stars

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Group II</th>
<th>Group III</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical signatures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A(C)-[Fe/II] correlation</td>
<td>yes</td>
<td>no & higher A(C)</td>
<td>(1), (2)</td>
</tr>
<tr>
<td>A(C)-A(Na, Mg) correlation</td>
<td>yes</td>
<td>no & lower A(Na,Mg)</td>
<td>(1)</td>
</tr>
<tr>
<td>A(C)-A(Ba) correlation</td>
<td>yes</td>
<td>no & lower A(Ba)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Galactic environment			
Galaxy type	dSphs (& UFDs)	UFDs	(2)
Galaxy total mass	$\sim 10^9 M_\odot$	$\sim 10^6 M_\odot$	(3), (4), (5), (6)
Star-formation history	prolonged (chemically evolved)	truncated (stochastic, inhomogeneous)	(6), (7)

Star-forming environment			
Progenitor SN	normal CCSNe	faint SNe	(8)
Gas cooling agents	silicate grains	carbon grains	(8)
Dominant Pop. contribution	Pop. II	Pop. III	(9), (10), (11)
Number of progenitors	multiple (multi-enrichment)	single (mono-enrichment)	(12)
Natal-gas enrichment	internal pollution (self-enrichment)	external & internal pollution	(13), (14), (15)

Yoon, Beers, Tian, & Whitten (2019)
Origin of ubiquitous Ba abundance

- **r-process** production events via NSM, collapsar, magneto-driven supernovae

- **weak-s process** in rapidly rotating massive stars

- **Existence of AGB stars with** $[\text{Fe/H}]<-3.0$ that produce little if any s-process elements. → r-process might not be the only producers for Ba

- Require theoretical understanding of this phenomenon
Archetypal fitting to CEMP groups

3 archetypes of parameters representing CEMP groups.

Devin Whitten