An EP-DT Irradiation Facility beyond LS2

EP-DT Seminar 19.Nov 2019

M.R. Jäkel on behalf of EP-DT Irradiation Team

Seminar Overview

- Introduction
 - Why irradiation facilities
 - Irradiation facilities operated by EP-DT
- History
 - Original GIF @ West Area, and proposal for a new facility
 - Construction of GIF++ in EHN1
- GIF++
 - Main mode of operation
 - User Community
 - LS2 challenges
 - Recent upgrades to the facility
- Future improvements planned
- Outlook beyond LS2 (LS3?)

Irradiation Facility: what for ?

Radiation damage studies on:

- materials used around accelerators/experiments
 - structural material, glues, pipes, insulations, thermal materials, ...
- electronic components
 - transistors, memories, COTS, ASIC, ...
- semiconductor and calorimetry devices
 - silicon diodes, detector structures, scintillating crystals ...
 - equipment sitting in the inner/middle layers of HEP experiments
- Test and development of prototypes / final assemblies / electronics equipment before installation:
 - performance degradation after long exposure/ageing (TID, NIEL, ...)
 - functional degradation of electronics (SEU, latch-up, ...)

Test and calibration of components:

- dosimeters, radiation monitoring / measurement devices
- detector performance in presence of high background

Muon Chambers for the (HL)-LHC Experiments

- Depending on their final position in an LHC experiment, different muon chambers will experience very different working conditions
 - Need to withstand the expected radiation accumulated for the lifetime of the chamber (+ safety factor)
 - Need to operate reliable in identifying muon tracks within large background radiation caused by collisions and activation of nearby material

A test facility need to address both points

- Long term irradiation (often several years) with highest possible field allowed for ageing studies of materials and electronics
- Adjustable irradiation field that can be tuned to the expected working conditions for each chamber, in combination with Muon tracks from test beam or cosmic.

Radiation levels for LHC Experiments phase II upgrade (2025)

Max expected hit rates and integrated charges

Numbers refer to the hottest regions extrapolating the behavior of the present systems

	ATLAS				СМЅ			LHCb		ALICE		
Lumi	csc	MDT	RPC	TGC	csc	DT	RPC	Lumi	MWPC	Lumi Pb-Pb	RPC	
7x10 ³³ cm ⁻² s ⁻¹	20	10	3	21	3	0.1	3	4x10 ³² cm ⁻² s ⁻¹	40	4x10 ²⁶ cm ⁻² s ⁻¹	8	Int. char
25 fb ⁻¹	770	280	13	100	170	2	14	3 fb ⁻¹	4x104	150ub ⁻¹	3	Max. hit rate
1x10 ³⁴ cm ⁻² s ⁻¹	80	40	ш	84	12	0.35	12	4x10 ³² cm ⁻² s ⁻¹	100	2x10 ²⁷ cm ⁻² s ⁻¹	<10	Int. cha
100 fb-1	1100	400	18	140	250	3	20	8 fb ⁻¹	4x104	Inb ⁻¹	20	Max. hi rate
3x10 ³⁴ cm ⁻² s ⁻¹	280	140	38	280	41	1.2	42	1x10 ³³ cm ⁻² s ⁻¹	300	6x10 ²⁷ cm ⁻² s ⁻¹ 10nb ⁻¹	30→10	Int. cha
350 fb ⁻¹	3300	1200	54	430	750	9	60	23 fb ⁻¹	1x105		125	Max. hi rate
7x10 ³⁴ cm ⁻² s ⁻¹ 3000 fb ⁻¹	2400	1200	330	2450	350	10	360	2x I 0 ³³ cm ⁻² s ⁻¹ 46 fb ⁻¹	600			Int. cha
	7700	2800	130	1000	1700	20	140		2×105			Max. hi rate
									Internet of	ahanaa in mCla	-2 (Clas	fan MV

Integrated charge in mC/cm² (mC/cm for MV Max. hit rate in H:

© P. lengo (ECFA HL-LHC 2013)

outer (muon) detectors:

 γ -BKGD ~ $\mathcal{O}(10)$ w.r.t. LHC

⇒ New Gamma Test Facility

Crosscheck with ATLAS Phase II LOI

inner detectors (trackers): 10¹⁶ 1MeV_{neg}/cm² ⇒ Upgraded Proton Test Facility

> 9

CÉRN

CERN Irradiation Facilities

CERN Irradiation Facilities

Current EP-DT Irrad. Facilities Team

Maurice Glaser (Honorary Member)

Georgi Gorine (COAS FCC until April 2019, PhD defense spring 2020) Martin Jaekel (STAFF 50%) Federico Ravotti (STAFF)

9, **Giuseppe Pezzullo** (STAFF) Blerina Gkotse Isidre Mateu (COAS-PhD, AIDA-2020) (FELL 50%, AIDA-2020) Viktoria Meskova (TECH, ATTRACT)

CERN Proton Irradiation Facility (IRRAD)

IRRAD: Summary Run 2018

81 experiments completed in 2018:

- <u>92 users</u> registered in the IRRAD Data Manager (cern.ch/irrad-data-manager)
- 996 objects declared by the users
- 792 objects irradiated

1E+18

1000

IRRAD: Summary Run 2018

Gamma Irradiation Facility < 2014

Original CERN-Gamma Irradiation Facility (GIF) has been intensively used to simultaneously expose detectors to the photons from a ¹³⁷Cesium source and high energy particles from the X5 beam line in SPS West Area,. From 2004 onwards, only the Cs source (≈ 0.5 TBq) was available.

Among other clients, most LHC gas detector technologies have been validated at the GIF: CMS: RPC, CSC; ATLAS: MDT, RPC, TGC, CSC; ALICE : TOF, AMS, CPC, RPC; LHCb: MWPC; COMPASS detectors....

Still fully booked all year round in 2013/2014 !

CÉRN

EN Engineering Department

Original GIF B190

≈ 500 GBq ¹³⁷Cs Irradiator

Set of Pb absorption filters

One large field One shutter on side

CÉRN

Decommissioning GIF B190 Nov. 2014

GIF++ 2014 - 2018 LS1- Run 2 - LS2

Concept of a new Facility (2012-2014)

- Joint facility, operated by EP-DT (PH-DT) and EN-EA (EN-MEF)
- Unique place, combining a high energy muon beam with a 14 TBq ¹³⁷Cs gamma source (< 30 compared to orig. GIF)</p>
- Designed for testing real size detectors, of up to several m², as well as a broad range of smaller prototype detectors and electronic / optical components.
- 100 m² irradiation bunker with 2 independent irradiation zones (~ 30+25 m²), separated attenuation systems
- Large preparation zone to optimise the irradiation zone usage
- All year operation from Cs-Irradiator
- High energy Muon beam from H4 beam line
 7-9 weeks of dedicated beam (main user H4)
- Central Control System, recording all relevant parameters and provides interlocks, user operated DAQ and Trigger System
- Wide range of available gases (+ custom gases) in bunker & service zone

Joined Facility EN & EP

(after construction)

CERN EP-DT Detector Technologies

- EHN1 infrastructure
- Beam line H4
- General facility infrastructure
 - Electricity, cooling & ventilation, gas primary system...
- Access system (contact to)
- General safety EHN1 (incl. GIF)

- Cs Irradiator
- Local gas distribution
- User operation
 - Irradiation requests, SPS beam request, space management
 - User installations
 - User contact
- Safety (setups & users)

GIF++ EP TEAM 2016-2019

GIF Physics Coordinator

GIF User Tech.Coordinator

EXSO

- Deputy to SPS Physics Coordinator for the GIF with authority to optimise the user schedule for all modes (beam, stand alone...), within the constrains of the SPS schedule
- Future development of the facility
- Space management of the bunker & preparation zone
- Supervising user installation, installation of cables & electronics, rack space distribution, gas requests

- **Contact to EN services**
- Gas system First level support
- Deputy EXSO

One **EX**perimental **S**afety **O**fficer (EXSO) for all EP irradiation facilities

Department RSO (Radiation Safety Officer)

An New Home for the GIF - EHN1

CÉRN

Original Facility Layout

GIF++ Construction 2014

- 2 large area irradiation fields (upstream / downstream)
- Irradiator movable perpendicular to beam-line to use field optimal when beam pipe is installed to deliver electron beam to CMS-ECAL (≈ 2 weeks per year)
 - Since 2018 also need to deliver beam to Neutrino platform NP04 (several months ?)

GIF++ Irradiator

I4 TBq ¹³⁷Cs (as of 2014)

Source stacked with two cylinders of 74W

2 large irradiation fields ±37 degree (horizontal & vertical)

Angular correction filter (Fe) provides uniform photon distribution for large area planar detectors

GIF++ Radiation Field

Dose equivalent rate (40 cm around the beam line vertical position)

GIF++ Attenuation Filters

EP-DT Seminar 19.11.2019

Note linear dose rate scale.

on this figure.

Measured profile

HR+CH 180416

Special Case - Additional Half Filter

A filter covering PART of the solid angle can provide a smaller intensity for detector "A" without reducing the intensity for detector "B".

To permit simultaneous operation with somewhat different attenuation, at the same downstream side, a HALF-FILTER with nominal att. 15 was proposed / constructed. Currently not in use.

Hans Reithler

28

COVE

by half-filter

Here:

only

standard

filte

8

Irradiation Fields Run 2

GIF++ Gas System (EP-DT-FS)

The gas systems infrastructure is a key element for successful R&D programs at GIF++ The GIF⁺⁺ Gas systems infrastructure is comparable to a medium size experiment. Frequent changes related to the normal R&D activities are particularly demanding.

For GIF⁺⁺, Gas team built and it is contacted for maintenance/operation of:

- 7 gas mixer modules
- 3 gas recirculation systems (for flow < 50 l/h)
- 1 gas recirculation system (for flow < 200 l/h still to be commissioned)
- 3 gas humidification modules
- 1 gas chromatograph
- 2 infrared analysers
- 10 O₂ and H₂O analysers
- 1 exhaust module
- 21 gas distribution panels
- regeneration of gas cleaning agents (about 10 cartridges)
- pipe work
- special gas requests (for example nC_5H_{12} , HFO, calibration bottles)
- development of interlock signals related to specific gas system conditions

In addition, EP-DT-FS Gas team developed and maintains the e-log.

M.R. Jäkel

(CERN)

Gas chromatographic analysis : allows monitoring gas mixture composition and presence of impurities on return from detectors under test

Mixture distribution

Monitoring of pressure, O2/H2O, temperature, atmospheric pressure

Additional software controlled pressure regulation for very low flow regimes

Gas mixing unit

Gas purification cartridges

R. Guida (GIF AUM 2019)

- Control of filter system, monitor of radiation (RADMON)
- Providing interlocks (e.g. on gas system faults)
- Remote monitoring, Web display....

CÉRN

Central Control System

EP-DT-DI S. Ravat et al

CÉRN

2019

Data Retrieval Tool

GIF	Gamma Irradiation Facility	
GIF Main Page	AIDA APPLICATION PROCEDURE FOR AIDA-2020 TRANSNATIONAL ACCESS ARE AVAILABLE HERE	
GIF Control System	List of currently active IMPACTS for the GIF.	
Documents & Plans		
Publications	Latest PDF with setup description	
Procedures Safety & ccess	Current GIF Bunker usage (updated once a day) :	
Logbook		
Schedule		
Meetings		
Contacts		
🖞 User List		
Irradiation Request		
> News		
RADMON Status		
ADMIN PAGES	Installation related questions: Please contact Martin or Giusence for any questions related to the installation of equipment in the GIF. See	
	also the "Contacts" section on this page. For more information you can also contact the EP-DT Irradiation Facilities Team.	
	Please note that every new setup needs to complete the ISIEC/Safety Clearance, and every setup inside the GIP bunker must display its IMPACT number visible.	
https:/	/gif-irrad.web.cern.ch/gif-irrad/	
	<u> </u>	
	Thanks to Katarina Milacio	
	(Summer Student)	
	EP-UI-UI	

- Improved data retrieval (Pytimber)
- More stable, better plotting, zooming (!)
- Better export to CSV with correct dates

Restricted to members of "gif-active-users" e-group

Detector Control System + Sensors

- Use PVSS/WinCC OA (as in LHC experiments)
- CAEN Easy Power System [1 mainframe, 1 Power Generator, 1-2 crates + with HV and LV boards and 1 ADC A-3801 board for monitoring (128 channels), also for ENV and gas monitoring]
- Mainframe and PC in proximity of the control room (radiation-free area) along with DAQ PCs and equipment
- EASY crates and other equipment closer to detector area

Radiation sensors

RADMON PCB BASED WITH 2 RadFETS DETECTORS 1xLAAS 1600 - till 10 Gy 1xREM 250 - till 2000 Gy

Gas and Environmental sensors

Monitoring (for both atmospheric and gases): **p**, **T**, **rH** Baseline: 4 gas and 6 atmospheric sampling points

CÉRN

Cosmic Tracker System

Cosmic Tracker

Roof chambers

- Trigger and high time resolution
 - new RPCs with 1 mm gas gap
 - 3 4 independent detectors with area 1.0x0.5 m²
 - strips 2.5 cm wide

٠

- 1 m long strips in all 4 RPCs
- 0.5 m long strips in 2 out of 4 chambers

Bottom chambers

Underground detector

- ATLAS-like RPCs with 2 mm gas gap
- Double layer chambers: total size 2.8 x 2.4 m²
- Two chambers with bi-dimensional read out with 4 cm wide strips

Installation of Cosmic Trigger Floor Chambers

- Installation of first floor chamber in 2015, second chamber in 2017
- NIM crate with coincidence logic between the two chamber layers → 2 LEMO cables
- Two trigger signals available from central part of the chambers, need additional crates with NIM modules to provide trigger from entire chambers

Installation of Cosmic Tracker Roof Chambers

- Roof chamber support designed during 2018 (incl. steel shielding)
- Installation of supply during 2019 Bunker Extension
- Raising of 2 roof tiles by 40 cm to provide additional shielding
- Installation of 3 chambers finished, readout to be completed in late 2019 / early 2020

Extended Cosmic Trigger

- Additional 2 trigger chambers to be installed outside GIF bunker for triggering on beam halo Position of downstream chamber fixed, upstream chamber can be defined now
- 2 additional chambers planned for cosmic trigger Position of downstream chamber fixed, original proposed position of upstream chamber to be redefined.
- Material on site, completion expected during 2020

LHCb MWPC based Cosmic Trigger 2019

- During the LS2, several m² of muon chambers (including read out electronic and cabling) became available from LHCb due to an upgrade
- This would open the possibility to install a second fixed permanent cosmic trigger (e.g. upstream)
- Ongoing discussion about possible installation & maintenance (main problem = manpower during LS2)
- Demonstrator built that can be installed around existing set-ups
- Two gaps in one chamber.
- Gas gap: 5 mm
- Wire: Gold-plated Tungsten, 30 μm dia.
- Wire spacing: 2 mm
- Wire length: 210 mm
- Wire mechanical tension: 60 gf
- Gas mixture: Ar/CO2/CF4 (40:55:5)
- Gas gain: $G \approx 10^5$
- Charge/mip: ≈ 0.8 pC @ HV ≈ 2.7 kV
- Field on wires: 262 kV/cm, on cathodes 6.2 kV/cm
- Gain uniformity: $\leq 30\%$
- Gap efficiency: \geq 95% in 20 ns window ($\sigma t \approx$ 3.9 ns)
- Rate/channel: max 2 MHz in M1, < 0.6 MHz M2-M5
- Max. operating voltage: 3 kV
- LV 3.5V, 1.5 A per chamber. Build-in chamber LV-regulator, tolerance +-100mV
- Typical HV 2700V
- · Signal output LVDS. Readout from anode wires groups.
- Active area is 968 x 200 mm (granularity 40x200mm) x 24

EN Engineering Department

Radiation Monitoring

- 12 x RADMON sensors, that can be distributed throughout the facility
- 2 independent REMUS detectors, accessible via DIP & TIMBER
- 2 Berthold counter GM LB6500 (P.laydjiev et al) + AUTOMESS AD6 dosemeter with external probe
 - 3.2m translation stage, remote controlled, that can be equipped with dosemeter / counter

The Radiation Field in the New Gamma Irradiation Facility (GIF++) at CERN

D. Pfeiffer, G. Gorine, H. Reithler, B. Biskup, A. Day, A. Fabich, J. Germa, R. Guida, M. Jaekel, F. Ravotti, Nuclear Inst. and Methods in Physics Research, A 866 (2017) 91-103

GIF User Operation

GIF++ Main R&D

- Ageing tests under radiation
- Detector validation tests in presence of high radiation background + muon beam

Annual User Meeting :

https://indico.cern.ch/e/GIF-AUM-2018 / GIF-AUM-2019

Facility designed / optimised for Muon gas detectors for the LHC experiments upgrade projects, but also hosts a large variety of other users (e.g. BLMs for beam instrumentation)

Wide Range of Smaller Test Campaigns

EN-CV - tightness of cooled cables manifolds

Filter box -collaboration btw ESA and CERN

Plastic scintillator rods with Gafchromic[™] films - CMS UMD collaboration

ALICE ITS Upgrade Power Board

BLM Ionization Chamber (≈ 900!)

µlens and optical fibres for the TOP PID detector of Belle II experiment

110%

HFC phase down schedule

Run 4

Eco Friendly Gas Mixtures

B. Mandelli, DT Group Meeting Jun 2019

Remaining vapours (-35 °C):

N₂, impurities, SF₆

12 Jun 2019

EP-DT Seminar 19.11.2019

Beatrice Mandel

2018 Muon Beam Overview

Very successful run in 2018 with **9 - 11 different setups simultaneous in the muon beam** during 7 weeks of shared beam time with RD51.

Extensive gamma-irradiation program throughout 2018 with **22 large setups competing for irradiation**.

Challenging optimisation between high- and low-field irradiation.

Nr #	IMPACT		position (meters from the source)		setup size (beam dir x width x height)	#weeks (total)	Apr 25-01	May 02-08	Aug 01-07	Aug 08-14	Aug 15-21	Aug 22-29	Oct 24 30
1	117032	ATL-sMDT	0.5		0.8 x 1.2 x ? m	3	-	-	х	х	х		-
5	115206	ATL-sTGC	1.5		0.5-1 x 1.5 x 1.5 m	3					х	х	х
3	106299	ATL-MM & MM-LM2M0	1.5	Upstream	1m x 1.4m x 1.8m	1	x						-
18	112713	EP-DT 2	3.5		1 x 1 x 2 m	6	х	х	х	0	х	х	х
14	112859	CMS-RPC1	4		1.1 x 2.36 x2.2 m	6	-	х	х	х	х	х	х
15	112858	CMS-RPC2	1.8		0.8 x 0.8 x 2.2 m	2	х	x					
16	112857	CMS-RPC3	2.8		0.8 x 1.8 x 2.2 m	7	х	х	х	х	х	х	х
		ALICE MRPC	2.8		(CMS-RPC3 hosted)	1							х
20	112288	LHCb-M2R2	1.5		0.6m x 1m x 1.8m	7	x	х	х	Х	х	х	х
2	112197	ATL-Phase-II system test	3	Downstream	0.4 m x 0.6 m x 1.8 m	5	х	Х	Х	Х	х		-
6	114660	ATL-RPC	4-4.5		0.80 x 0.8 x 1.80 m	5		х	х	х	х		х
7	107041	CMS-CSC1	2.4		0.85 x 2.22x1.8 m	7	х	х	х	Х	х	х	х
8	107044	CMS-CSC2	3.3		0.85 x 2.8 x 1.8 m	7	х	х	х	х	х	х	х
12	104078	CMS-DT-MB2	5		0.5 x 2.5 x 3 m	2	х						х
17	106277	EP-DT 1	2		0.5 x 0.8 x 1.8 m	4			х	х	х	х	
19	102679	CBM-TRD MWPC	1.5		?	1							Х

Up to 11 (!) detector set-ups in beam....

... often with multiple chambers per setup

LS2 Operation

Irradiator fully operational throughout LS2

- Except \approx 1 week of Irradiator maintenance each year
- Several short stops due to EHN1 infrastructure maintenance & consolidation

Most long term irradiation test are continuing

- Continuous conflict between High γ-irradiation campaigns (max.collective dose) vs. low radiation ageing tests
 - For realistic results, this dose collection cannot be accelerated beyond a certain ratio. E.g. CMS-DT requested \approx 4 month with 1/15 field
- Bunker space was occupied to a large extend

Addition challenge

- Several mass production test campaigns to be fit in parallel to long term irradiation (ATLAS NSW Micromegas & sTGC, ATLAS RPC)
- Multiple access needed per week (to swap chambers) in addition to frequent absorption filter change and source ON/ OFF intervals.

Example of a (planned) Mass Production Test @ GIF

THE ATLAS NEW SMALL WHEEL

Upgrade of the innermost end-cap region of the Muon Spectrometer

<u>Upgrade required to operate the Muon</u> <u>Spectrometer at higher rates</u>

Run III (starting 2021): 2 x design Luminosity HL-LHC (starting 2026): 5-7 x design Luminosity

Motivations:

- Tracking:

MDT/CSC performance will drop significantly at HL-LHC rates (expected: up to 15 kHz/cm²)

----> Install detectors which can withstand the rates

- Triggering:

Current L1 Muon trigger relies mostly on Big Wheel: High fake rates on end-cap regions

----> Extend trigger coverage up of $|\eta|=2.7$

----> More robust trigger to reduce the fake rates

Lorenzo Pezzotti, Ivan Gnesi, George Glonti, Alan Peyaud - GIF AUM 2019

- A wide array of different chambers to be tested
- Different setups (moveable trollies) for different type of chambers
- Micromegas and sTGC chambers arrive independently at GIF⁺⁺
- Need to be tested independently spread over both irradiation fields
- In addition long term irradiation studies on selected chamber (MM SM1-M3)

Micromegas

sTGC

Typical test procedures

Micromegas

- flushing Ar/CO2 (> 10 volumes) before testing
- rising HV up to nominal 570V
- data taking over 2h
- data processing
- summary report

- Install the chamber in the bunker
- Flushing for 24h with pentane/CO2
- Put source off
- Ramp up HV (2800 V)
- Check that we don't have current
- Switch on the source for $\frac{1}{2}$ hour
- Switch off the source for few minutes
- Should have no current
- End of the test

EP-DT Seminar 19.11.2019

11:30

11:25

20.60

temp_inside

8

Example of an unforeseen Mass Production Test @ GIF

Following slides are based on (if not otherwise stated) :

https://indico.cern.ch/e/GIF-AUM-2019

ALICE TPC Upgrade

Goal: operate ALICE at high rate, record all MB events

- ✓ 50 kHz in Pb-Pb (~10 nb⁻¹ in RUN 3 and RUN 4)
- \checkmark no dedicated trigger, reduce data size, preserve PID
- ✓ Average event spacing: ~20 μ s
- \checkmark Event pileup: 5 on average
- ✓ Triggered operation not efficient

Continuous readout with GEMs

- ✓ Stable operation under LHC conditions
- new electronics / HV system / novel calibration / online reconstruction schemes

GEM production at CERN

- Production rate: 40-60 GEMs/month
- GEM QA
 - After every production step / shipping: HV test at identical conditions at all institutes, Dedicated long-term stability test
- GEM framing / ROC assembly and testing
 - 2-3 IROCs/month, 4 OROCs per month
- Each chamber is packed in its own gas box Final stress test and storage at CERN
 - Full irradiation with hadrons or X-rays

ROC TESTS IN THE ALICE CAVERN AT THE LHC

Test area close to LHC beam pipe, where doses up to 10 times of Run 3 are reached ROC can be tested in their own gas enclosure **Only 28/45 IROC and 13/40 OROC could be tested in ALICE cavern before start of LS2**

SPOTES ISSUE DURING IRRADIATION

Cavern allows to irradiate ROC with >10x higher particle load on GEM stack

Imperfections around solder points can be reliably identified Problem solved by applying small amount of epoxy in critical spot

10% of assembled stacks affected

Not spotted during x-ray tests

M.R. Jäkel

Before starting mass testing we did reference measurement: 4 stacks were put into GIF (2 good / 2 bad), Full intensity

- \Rightarrow GIF++ irradiation allows to spot issue
- → Started mass testing (up to 8 OROC per week)

Goal: Test all remaining chambers (17 IROC / 27 OROC)

Procedure:

- ~4 month of testing at GIF
- Gas flushing: ~1d
- 0.5-1h irradiation at full intensity
- Swap chambers afterwards
- All chamber validated at GIF++
 - 67% OROC
 - 37% IROC

~10% shows issues (repaired and retested)

Where are the tested / repaired ROC now ?

Successful installed in ALICE TPC !

Bunker Extension July 2019

- GIF++ was huge improvement over previous facility
- Two irradiation field with independent absorption filters
- > 2 times the available irradiation space
 ≈ 100m² bunker zone with 2 x ≈ 25 m² irradiation zone

Growing demand over last years !

- Need for more space along the beam line to ensure proper access to detectors
- Need for a dedicated lowirradiation zone, further away from the Cs source

Extended Irradiation Bunker

Extension of irradiation bunker by $\approx 60 \text{ m}^2$ in the upstream direction. Increased space available during beam time and allows us to better cope with different gamma intensity requirements throughout the year.

electronic ECR https://edms.cern.ch/document/1905810/

bunker

M.R. Jäkel

GIF Extensions - Constrains and Challenges

Irradiator fully operational throughout LS2

- Strong demand for irradiation
- Important mass production tests to be finished (e.g. ALICE TPC)
- Critical productions tests ongoing or planned (e.g. ATLAS NSW)
- Long term irradiation to be finished...

Careful timing and precise planning needed

- Minimal disruption of test campaigns
- Synchronised with the critical deliverables from users
- Shutdown of only 3 weeks envisaged during July
 - Including annual irradiator maintenance (1 week)

Preparation

- Freeing area in PPE 144 & PPE 172
 - Re-routing external cables, remove cable trays
- Modify fixation of electrical switchboards, gas panels...

CÉRN

Bunker Extension

M.R. Jäkel

EP-DT Seminar 19.11.2019

65

Extension of Alcove

- Enlarge (preserve) valuable space close to irradiator for big chambers
- Needed removal of large part of the roof
- Weakened shielding compensated by additional blocks outside

<u>Movie</u>

Source Displacement

- Better distribution of setups between fields
- Easier access for large setups
- Free space of cosmic trigger
- Moved by 1m (preserving low irradiation field)

- Custom made transport support
- Only possible with the help of EN-HE, HSE, RP.... and VF

New Bunker Layout

 \approx + 1.5 cm in additional height

69

Chance to remove (= cut) unused cables from previous setups

- **Re-routing cables for new locations**
- Freeing valuable space in cable galleries
- **Installing additional cables** \triangleright

EP-DT

GIF++ New Bunker July 2019

Finished on schedule !

- 3 week stop of Irradiator
 - including 1 week maintenance test.
- **Finished within budget**

Conclusion - Bunker Extension

Bunker extension finished in time

- Significant improvement (!) that allows us to space the set-ups as needed (dimensions, filter needs...)
- Easy access zones available for ongoing mass production tests, allowing quick exchange of chambers to be tested

Problem remaining:

non-uniform shadowing of set-ups

(by other chambers, supports...)

- We try to better use the radiation field by lifting chambers and minimising shadowing
- Some constrains due to accessibility requirements for chambers, and stability of setups

The Way Forward...

Can we improve the Muon Beam ?

- More intense Muon beam ?
- Better focused ?
- Adjustable ?

⇒ Let's ask EN-EA !

The North Area Beam Lines – Design Principle

"Wobbling" of the beam *before* and *after* the target allows for flexibility on the particles selected and transported to the experimental areas – strong correlation between the momenta/angles/rates between H2 / H4 – also small tuning in H4 is always necessary after each 'Wobbling change' (every week normally)

Muon Beams @ GIF++ up to LS2

Muons are created by the pion decays

- Selecting 150 GeV/c secondary momentum -> Pion content very satisfactory
- Lower momenta more pion enriched

- The "dumping" collimator is \approx 1.1 m of iron the jaws of which also have a little opening that cannot be closed fully ("collimator \neq dump") Some pion contamination inevitable \rightarrow GIF⁺⁺ used to keep closed XTDV2 and often XTDV1. XTDV1,2 = 3.2 m of iron (efficient dump)...however:
 - Behind XTDV1 : A radiation monitor placed for a good reason XTDV is not meant to be a "dump" but to PROTECT people behind it
 - GIF⁺⁺ \approx 80 m after XTDV1, and multiple scattering causes a good fraction of the muons to be lost before.

Simulations of muons @ GIF++ (1)

 Extensive Monte-Carlo simulations with detailed geometry model done by summer student R. Margraf (Univ. Lenigh). Report available <u>here</u>.

A new proposal for a pion dump before GIF++

- Two new beam dumps in front of GIF⁺⁺, which can be manually moved out of the beam for hadrons / electrons @ PPE164
- Flexibility on the amount of iron that can be in front of the beam (2 or 1 blocks).
- XTDV in front of GIF++ always flexible (interlocked with PPE144)
- HSE/RP tentatively agrees to the new beam dump with a slight reenforcement of the shielding.
- Still some details to be clarified (side shielding?).....
- Costs : Minimal / free

luon Content (10⁶ Events)

Monte-Carlo (preliminary) comparison

Current configuration (150 GeV)

New configuration (80 GeV)

Momentum

Better defined momentum and more 'focused' beam

Concerns from RP about accessing the bunker during muon beam are currently investigated.

And what about beam steering

Nikos quickly investigated this possibility.

- Yes, it is possible to place a dipole that will be moved (by hand) inside/outside the beam line, filled with iron (for stronger field) just in front of our XTDV
- 10 A would give ≤ 30 cm horizontal steering at the position of the irradiator

Magnet will be free, 12 kCHF for cabling / power supply

- We currently also investigate if magnets before PPE144 could be used to pre-steer the beam slightly, increasing the deflection to ≈50-70 cm.
- Further investigation and simulation needed !
- · Requests needs to come from users

And beyond LS3 ?

The Big Picture...

- Currently the lifetime of the facility is stated as 10 years (2014-2024) (after this, the Cs Source (\approx 11TBq) needs to be re-certified or exchanged)
- Possible upgrades and the resulting downtime of the facility need to be compatible with R&D requirements
- Cs source replacement should be straight forward as long as new source stays < 100 TBq (bunker shielding, handling of source, legal obstacles). Actual source strength defined by R&D needs and bunker size
- Budget needs to be allocated for upgrades

CÉRN

Phase 1 Extension - July 2019

Phase 2 Extension - LS3 ?

Irradiator Upgrade ?

- Standard VF Irradiator design was significantly modified to have 2 large opening (74° H&V), instead of the usual small area shutter.
- Replacement of Cs capsule with higher intensity one is possible. Costs will mainly depend on required TBq.
- Similar Irradiator exist with multiple source carousel, allowing up to 5 (+1 empty) capsules to be loaded. Mixture of different intensity and gamma sources (Cs, Co,..) could be realised
 - Changing of Irradiator dimensions would most likely need a redesign of the complete attenuation system, as all filters have been calculated and custom made for existing geometry. Costs significant.

Thank you for your attention

Backup Slides

ALICE TPC UPGRADE FOR RUN 3

Solution:

- Quadruple GEM stacks with different hole pitch and rotation of whole pattern
- Optimized field configuration and gain profile
- Robust against discharges

Compromise between IBF and energy resolution (σ) optimization

Annual GIF User Meeting 2019 (%).9..2019 | R. Muenzer | IKF Frankfurt / CERN

ALICE TPC ROC PRODUCTION

R. Münzer / GIF - AUM 2019

The Experimental Hall North 1 – EHN1

Hosts permanent fixed target experiments and quasi permanent test beams of large LHC experiments, as well as many non-permanent test beams for detector R&D

 \Rightarrow A dynamic building that adapts to the user needs

SPS : protons/ions @ 400 GeV/c

Maximum momenta available to the users in the SPS Test Beam Facilities :

<u>North Area</u> $\rightarrow \leq 400 \text{ GeV/c}$ (primary beam) or $\leq 380 \text{ GeV/c}$ (secondary beam)

Mixed hadrons or pure electrons

- Spill duration approx. 5 seconds
- Usually : 2 cycles / SPS supercycle for NA
- Spill length / repetition frequency dependent on the physics program of all the facilities served by SPS and LHC → Variability to be expected.

Beam Tracker

beam-position detectors

Detectors

- Two Thin-Gap-Chamber 4-plets (60x40cm²) with strips, wires and pads in each gap
- Spatial resolution measured on test beam ~80µm

Electronics (original plan)

- 4 layers (instead of 8) will be equipped with temporary frontend and readout electronics during 2014
- final electronics for the 8 layers will be implemented in 2015

However... "some" delay on the electronics has account

Currently used :

PH-DT

Detector Technologies

Requirements

- Create a trigger from beam tracker (TGC) and/or cosmic tracker (RPC)
- Distribute the trigger to different Detectors Under Test (currently up to 5 DUTs)
- Synchronise the events from the TGC/RPC with the DUTs for tracking/efficiency purpose

Implementation

- Based on a Trigger Logic Unit module provided by EUDET community and intensively used in test beams (DESY, CERN, FERMILAB, ...)
- Unit provides trigger signal and trigger number to all detector DAQs
- Requires busy signal from detectors DAQs
- This module synchronises the different DAQ systems

