Gamma Factory PoP experiment

Updates for the GammaFactory POP IP

2019 01 29

LAL group

Laser parameters

• From simulations, the preliminary laser parameters are:

Parameters	Values	Unit	Comment
central wavelength	1030-1040	nm	On wavelength fixed in this range
Central wavelength tunability	0.2	nm	
spectral bandwidth (a)	0.1-0.5	nm	TBP limited pulse, chirped pulse?
Pulse length	3-15	ps	Spectrum shap dependent, Gaussian assumption
Frep (b)	40	MHz	
Phase jitter	<10	fs	10Hz-10MHz, strongly limit possible supplier
average Power	40	W	vary vs the spectral setting / vs TBC
Energy/pulse	1	uJ	vary vs the spectral setting
polarisation	circular	-	
beam diameter	1 - 2	mm	Ajustment with telescope for coupling optimization to OC
beam quality, M ²	<1.2	-	

⁽a) possibly tunable but easier operation at fix value. Spectral shaping with sharp edge in the blue (b) with a coarse (+/- 15kHz) and fine tuning with a piezo stack

Feasible custom commercial laser.

Time bandwidth product, FTL pulse versus chirped pulse

• For a Fourier transformed limited pulse

$$\Delta \nu \cdot \Delta \tau = \frac{c\Delta \lambda}{\lambda^2} \cdot \Delta \tau \ge K$$
$$\Delta \tau = t_0$$

Shape	$\varepsilon(t)$	\overline{K}
Gaussian function	$\exp[-(t/t_0)^2/2]$	0.441
Exponential function	$\exp[-(t/t_0)/2]$	0.140
Hyperbolic secant	$1/\cosh(t/t_0)$	0.315
Rectangle	_	0.892
Cardinal sine	$\sin^2(t/t_0)/(t/t_0)^2$	0.336
Lorentzian function	$[1+(t/t_0)^2]^{-1}$	0.142

$$\varepsilon(z,t) = \int_{-\inf}^{+\inf} \varepsilon(\omega) \exp(-i(\omega t - \phi(\omega)) d\omega$$

$$\phi(\omega) = k(\omega)z = \sum_{0}^{\inf} \frac{\omega - \omega_0^m}{m!} \frac{\partial^m}{\partial \omega^m} |_{\omega = \omega_0}$$

m=2, quadratic phase => linear chirp

• If group delay dispersion has marginal effect on ion beam cooling, pulse length t_0 and spectral bandwidth can be decoupled by non-compensating the dispersion or adding dispersion

Progress in laser design considerations

Not a lot of progress, sourcing to identify supplier and laser design under discussion

New Optical cavity proposal

AM shows that a most simpler design with 2 mirrors (plan-concave) cavity is giving us:

Parameters	Values 2- mirrors OC	Values 4 mirrors (3D-OC)	Unit	Comment
Crossing angle	2.4	2.6	o	
waist_x @ IP	~1.4	~1.9	mm	
waist_y @ IP	~1.4	~1.7	mm	
Minimum waist	1.25		mm	On the coupling mirror
Max length	3,75	3,25	mm	
Beam diameter M1	1.25	2	mm	
Coupling	~ 70	~70	%	
Gain	>5000	>5000		Limited by oscillator phase noise
Stored power	>100	>100	kW	

The 2 mirrors OC has many advantages:

- easier alignment can be made without breaking vacuum
- minimized optomechanics under vacuum
- may be some pros for beam impedance issue

Rough integration design approach

First schematic of the interaction point system design guidelines integration:

- comes as a module in SPS, except possible chiller for the laser amplifier, power supply?

 Volume ~ 10 m³
- rack unit for laser and electronic easy to plug or un plug.
- epoxy granit? Or honeycomb optical table, environment T°C variation and radiation must be adresse

Optical scheme interaction point system

Not on scale unfolded view

Radiation hardness issue

Long Straight Section	Position	Height	SEU 3V	SEU 5V	R-factor	Φ _{HEH} [pp/cm ²]	Φ _{ThN} [pp/cm ²]
1 55 4	Α	Beam	20963	10498	0.1	8.88 x 10 ⁹	8.30 x 10 ⁸
LSS4	В	Floor	10351	1177	1.9	8.80 x 10 ⁸	1.64 x 10 ⁹
1,007	Е	Beam	N/A	17577	0.1*	1.50 x 10 ¹⁰	1.40 x 10 ⁹
LSS6 -	F	Floor	20181	N/A	1.9*	2.04 x 10 ⁹	3.81 x 10 ⁹

Long Straight Section	Position	Height	TID [Gy]
LSS4	Α	Beam	10.5
L334	В	Floor	4.8
1 55 4	С	Beam	5.4
LSS4	D	Floor	3.9
1.004	E	Beam	9.8
LSS6	F	Floor	4.0

- How it scales after one year in SPS?
- Results in favor of LSS4?
- SEU seems large special power supply and electronics required?
- What about shielding?

Bibliography comparison

G. Buchs *et al* . « Radiation hard mode-locked laser suitable as a spaceborne frequency comb » OPTICS EXPRESS Vol. 23, No. 8 (2015)

DOI:10.1364/OE.23.009890

Table 4. Proton fluences applied at each irradiated zone of the laser

Energy (MeV)	First cycle (2.5 years equiv.) protons/cm ²	Second cycle (5 years equiv.) protons/cm²
99.7	3.71·10°	7.42·10 ⁹
61.6	3.61·10°	$7.22 \cdot 10^9$
30.7	9.82·10°	1.964·10 ¹⁰
18.3	1.54·10 ¹⁰	3.08·10 ¹⁰

Required input from CERN SPS

To progress on the general design of the interaction point system:

1. Better understanding of the radiation measurement : shielding design ?

2. RF SPS reference for locking: RF signal to lock the cavity on SPS / how RF is

modified

- 3. Environment condition : temperature variation?
- 4. Integration constraints and safety: max volume and weight for the IP system, alignment network
- 5. Control-command and cabling

Next step for LAL team

> Yellow Report !!

- >Include chirp in software to describe laser pulse ion bunch interaction.
- >Optical cavity design refinement with investigation of thermal effect on the coupling mirror for the 2 mirrors OC
- >First proposal of a complete laser architecture and associated budget based on NKT photonics/teraxion proposal
- >Investigation of alternative design with NKT oscillator / teraxion (stretcher-spectral bandwidth filter) /Amplitude Amplifier
- > Design and test of the high energy spectral shaper (Institut Fresnel)
- > Visit SPS and freeze integration interfaces
- >Request for LAL design office time to produce first 3D model of the interaction point system

