Constrains on Laser system implementation in the SPS tunnel

Gamma Factory Meeting Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University Krakow, Poland 28–30 January 2019

By Valentin Fedosseev (CERN, EN department)

Requirements for laser installation

General requirements:

- Space for laser, optics, diagnostics, other electronic devices
- Electrical power
- Laser cooling => autonomous water circuit preferable
- Temperature stability => typically better than +/- 1° C
- Air purity => typically ISO 7 or better
- Class 4 laser safety => Designated Laser Area with access controls + enclosed beams outside DLA (Class 1)

Specific requirements:

- Synchronization to the machine timing
- Integration into the CERN control system

Interaction regions in SPS rings

Starights ections LSS4 and LSS6 were considered

Passage should be left free for transport. Practically no space for laser installation next to the beam line.

Could it be possible to place the laser in neighbouring areas?

Tunnel is larger

Space behind the beam line looks free

LSS.616

Measurements taken after 30 hours of cool-down:

- 2017 Physics run (protons) from 8th May2017 to 23th Oct 2017
- 2016 Physics run (protons) from 11^{th} Mar 2016 to 14^{th} Nov 2016

Measurements taken after 2 months of cool-down - Jan 2018

• PCMx probe SAPHYMO

(plastic scintillator – 200cm³)

- Distance ≈ 1m from beam line
- All along the 7km of the SPS Ring (\approx 18000 measurements).
- Labview registration application
- Survey usually performed after 30 hours of cool-down

HSE Occupational Health & Safety and Environmental Protection Unit

HSE Occupational Health & Safety and Environmental Protection Unit

For access after 30 h cool-down:

None of the two areas is particularly problematic. However, both areas have some small areas with higher dose rates.

Latest Radiation Survey made on 18.12.2018

	Mesures AD6	Mesures AD6
Eléments/Positions	au contact	à 40 cm
	[µSv/h]	[µSv/h]
VVSB.41601 - start	4	2
VVSB.41601 - end	3	3
MDH.41607 - start	3	2
MDH.41607 - end	6	1.6
BPH.41608 - start	6	1.6
BPH.41608 - end	4.7	1.2
QF.41610 - start	4.7	1.2
QF.41610 - end	4.2	0.9
MKE.41631 - start	2.5	1.7
MKE.41631 - end	2	1.2
MKE.41634 - start	1.8	1.3
MKE.41634 - end	2.1	0.9
MKE.41637 - start	2.4	1
MKE.41637 - end	2.4	1.5
MKE.41651 - start	2.7	1.5
MKE.41651 - end	3	0.9
VVSB.41658 - start	2.8	2.9
VVSB.41658 - end	8	2.9
MPLH.41658 - start	30	3
BWSB.41677 - start	7.5	3.8
BWSB.41677 - end	8.3	1.5
VVFA.41698 - start	2.4	1.2
VVFA.41698 - end	2.9	1.1

Eléments/Positions	Mesures AD6 au contact [µSv/h]	Mesures AD6 à 40 cm [µSv/h]
VVSB.61601 - start	2	0.3
VVSB.61601 - end	2	0.3
MDH.61607 - start	0.2	0.2
MDH.61607 - end	10	0.8
BPH.61608 - start	10	0.8
BPH.61608 - end	10	0.8
QF.61610 - start	2	0.3
QF.61610 - end	1	0.3
MKE.61631 - start	2	0.2
MKE.61631 - end	2	0.2
VBBA.61633 - start	3	0.2
VBBA.61633 - end	3	0.2
MKE.61634 - start	8	0.6
MKE.61634 - end	4	0.3
VBBA.61636 - start	3	0.3
VBBA.61636 - end	3	0.3
MKE.61637 - start	4	0.3
MKE.61637 - end	5	0.3
VBBA.61655 - start	4	0.2
VBBA.61655 - end	4	0.2
MPLH.61655 - start	5	0.3
MPLH.61655 - end	22	2
ZS.61676	16	1.9
VBBA.61678 - end	40	5

LSS6 looks slightly better regarding the radiation emitted by beam line equipment

Performed by EN/SMM-RME (EDMS document 2080251)

- Measurements performed at the IR locations in LSS4 and LSS6
- Period of measurements: 18/09/2018 17/01/2019

➢ Covers operation with protons and ions

Beam operation stopped on 10.12 => in total ~ 1700 h of beam time

- Measured values
 - Φ_{HEH} High Energy Hadron fluence
 - Φ_{ThN} Thermal Neutron fluence
 - TID Total Ionizing Dose (using passive silicon dosimeters)
- Method to measure HEH using BatMon system:

The Single Event Upsets (SEUs) induced by radiation in SRAM memories biased at two different voltages are measured and converted in fluences by solving the system:

$$\begin{cases} SEU_{5V} = \sigma_{5V}^{ThN} \times \Phi_{ThN} + \sigma_{5V}^{HEH} \times \Phi_{HEH} \\ SEU_{3V} = \sigma_{3V}^{ThN} \times \Phi_{ThN} + \sigma_{3V}^{HEH} \times \Phi_{HEH} \end{cases}$$

Number of SEU detected by each BatMon pair

Long Straight Section	Position	Height	SEU 3V	SEU 5V
ISCA	А	Beam	20963	10498
L334	В	Floor	10351	1177
LSS6	E	Beam	N/A	17577
	F	Floor	20181	N/A

Summary of the fluences and the R factor measured

 $R = \frac{\Phi_{ThN}}{\Phi_{HEH}}$

Long Straight Section	Position	Height	R-factor	Ф _{нен} [pp/cm²]	Φ _{τhN} [pp/cm²]
LCCA	А	Beam	0.1	8.88 x 10 ⁹	8.30 x 10 ⁸
L334	В	Floor	1.9	8.80 x 10 ⁸	1.64 x 10 ⁹
	E	Beam	0.1*	1.50×10^{10}	1.40 x 10 ⁹
L330	F	Floor	1.9*	2.04 x 10 ⁹	3.81 x 10 ⁹

Summary of the measured TID for each position

Long Straight Section	Position	Height	TID [Gy]
LSS4	А	Beam	10.5
	В	Floor	4.8
LSS4	С	Beam	5.4
	D	Floor	3.9
LSS6	Е	Beam	9.8
	F	Floor	4.0

Further data analysis and implications for electronics will be performed by EN/STI-BMI

Comparison with AWAKE conditions

No visible influence of proton beam on the devices

Fluka simulation by HSE-RP Laser room **Simulation Parameters:** 1500 $3x10^{11}$ p+/bunch 1 shot every 30 s

ED

400 GeV ٠

.

- **Experimental runs:**
 - 4 weeks per run
 - 2 runs per year
- Annual intensity: 4.8x10¹⁶ •

Synchronization to the machine timing

Phase stability conditions of the laser-ion interaction

• The integer harmonic of laser mode locking should be equal to an integer harmonic of the SPS RF frequency

$$f_{ML} \times M = f_{RF,SPS} \times D$$

⇒laser mode locking frequency should be specified accordingly

• Stabilized optical link between laser and SPS beam control equipment

Synchronization to the machine timing AWAKE example

H. Damerau et al., "RF Synchronization and Distribution for AWAKE at CERN" - in Proceeding of IPAC2106 [THPMY039]

Laser beam control and diagnostics

At CERN the accelerator control system is based on the Real-time FESA (Front-End Software Architecture) framework. => FESA classes are required for laser beam elements

- Motorization of laser mirrors, translators and other movable elements
- Laser shutters and dumps
- Laser power/energy meters
- Acquisition of laser beam images

Summary

- Location for laser installation should fulfil certain requirements
 - Space
 - Air quality
 - Temperature stability
 - Safety (enclosure)
- IR location at LSS6 offers some space near the beam line, where a laser installation could be placed,
- The residual radiation conditions in both locations are acceptable for human work during the no-beam periods
- Risks of laser electronics damage by HEH and thermal neutrons shall by analysed by experts. A qualified advice on possible shielding is expected
- Laser synchronization is a separate task to work out.
- Control of laser beam elements and diagnostics should be designed in accordance with CERN standards.

CUSTOMIZED kW- AND mJ-CLASS FEMTOSECOND LASER SYSTEMS

ActiveFiberSystemsGmbH(AFS)islocatedinJena, knownasthe"cityofphotonics"inGermany.Asa spin-offfromtheFraunhoferIOFJenaandtheInstituteofAppliedPhysicsattheuniversityofJenaAFS representstheexpertiseofinnovativesolid-state-laser development.

activefiber

systems

