DE LA RECHERCHE À L'INDUSTRIE



# Cryogenics for high magnetic field whole body MRI:

# **ISEULT 11.7 T at NEUROSPIN**







Déchiffrer les rayons de l'Univers



Philippe BREDY
30th of september 2019



#### **SUMMARY**



# Initial parameters of the Sc magnet

Main cryogenics choices

Detailed design and cooling down

Associated cryoplant

Cool-down and first measurements with field







#### Magnetic Parameters

| Maximum Nominal Frequency Internal diameter for whole body                                                                                                                                    | 499,8<br>900                             | MHz<br>mm                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|
| Maximum User Field (for maximum frequency) Homogeneity on the 22 cm diameter sphere (Peak-to-Peak) Homogeneity on the 22 cm diameter sphere (RMS) Long term drift Short term drift (time tbd) | 11,739<br>< 0.5<br>< 0.05<br>0,05<br>0,4 | T<br>ppm<br>ppm/h<br>ppb |
| 5 Gauss line position (radially) 5 Gauss line position (axially)                                                                                                                              | < 13.5<br>< 10.5                         | m<br>m                   |





#### Design of the Sc coils to be cooled (with a fixed current density on NbTi conductor\*)



<sup>\*:</sup> Nb3Sn excluded (lack of internal knowledge and high level technological risk)





# Design of the Sc coils to be cooled into a common bath inside 3 tanks communicating together







#### Superconducting parameters and T° of bath

- High magnetic field (11.7 T)
- Use of **NbTi**, very close to its Sc limits
- $\Rightarrow$  Operating T° below 4.2 K (4.2 K =He I at 1 atm)







9 mm

#### Sc coil operation

- With a "customized" industrial Cu/NbTi conductor, for the required current density
- ⇒ nominal current at 1483 A
- $\Rightarrow$  T<sub>current sharing</sub> = **2.8 K** (need to operate below this temperature)
- ☐ Required magnetic field time stability
- ⇒ permanent connection with external electrical power supply for continuous correction of current (significant difference compared to classical MRI)
  - ⇒ Installation of a pair of 1500 A current leads, cooled between 4 K and 300 K and electrically supplied permanently.





#### Superconductor operation

☐ Arbitrary **temperature margin of 1 K** for Sc conductor (usual margin...)

$$T_{op} = T_{cs}$$
 -margin = 2.8 - 1 = **1.8 K** as nominal operating temperature

#### ☐ Cryostability criteria

(H: one complete turn of the winding transited without reaching critical flux)

- ⇒ Need internal channels inside the winding to perfectly wet the Sc conductors
  - ⇒ Double pancake technology with radial channels and direct contact between fluid and Sc conductor









#### Cooling architecture

- Based on previous successful experiments on TORE SUPRA, LCMI and LHC
- □ Choice of a static pressurized superfluid helium bath at 1.8 K and ~ 1.2 bars (pressurized He II)
  - To avoid sub-atmospheric conditions on a large cryostat (risk of air inlet on cryogenic device)
  - To improve electrical insulation (higher voltage breakdown of He II at 1 atm • compared to He II saturated at 1.8 K/16 mbars •)
  - To gain in thermal performances
    - Very high thermal conductivity of He II
      - ✓ Isothermal bath all around the winding
      - ✓ Remote the cold source outside the cryostat
    - Enthalpy margin before He I transition













#### General principle of a pressurized superfluid helium bath

Double bath or "Bain Claudet"







#### Applying the pressurized superfluid helium bath for Iseult magnet

No enough space inside the cryostat and above the cryostat in the magnet room + Choice for no active cryogenic element directly on the magnet cryostat



=> Installation of a remote cryogenic satellite able to produce the double bath and contain all the interfaces between Sc coil and utilities

Cryogenic satellite





#### Applying the pressurized superfluid helium bath for Iseult magnet

Remote the cold source and consider the He tank around the coils as « *cul de sac »* : ⇒ Cryogenic satellite and He II pipe as thermal link (caloduc)







#### Applying the pressurized superfluid helium bath on Iseult

Final configuration in the magnet room





#### **PROTOTYPING AND PRELIMINARY TESTS**



#### SEHT test facility :

Preliminary test to validate the operation of a similar Sc double pancake winding with a superfluid pressurized helium bath (including quench behaviour)

**Magnet cryostat** 



**Overview of SEHT facility** 



Cryogenic satellite

Sc coil (ex LCMI 8 T NbTi coil in vertical axis)



#### **PROTOTYPING AND PRELIMINARY TESTS**



#### SEHT test facility:

#### Cooling down process

Different steps in the SEHT cooling down (through its temperatures)





#### **PROTOTYPING AND PRELIMINARY TESTS**



#### SEHT test facility:

Quench (triggered) and thermohydraulic studies (He overpressure)













#### **DETAILED DESIGN**









#### 7400 I to be filled 110 tons to cool down from 300 K to 1.8 K







# Rinsing and purging with pure He







#### Cooling of the unique thermal shield down to 80 K (LN2 flow)







# Cooling of the He tanks and coils from 300 K down to 5K (cold GHe flow from He liquefier)







# He tanks and coils near 5 K and thermal shield cooled by « 50 K » GHe flow from He liquefier







# Filling of satellite with LHe produced by He liquefier (thermal shield still cooled by « 50 K » GHe)







# Starting up of the cold source below 4 K by pumping unit (tank filling by condensation of GHe down to He II at $T_{\lambda}$ = 2.17 K)





#### **CRYO OK**



# Coil tank entirely filled with subcooled superfluid He (He II at 1.8 K and 1.2 bar)





# SAFETY DEVICES: HELIUM OVERPRESSURE







#### THE CRYOPLANT FOR THE MAGNET OPERATION





And all the other equipment needed for reaching the CRYO OK...



# MAIN GOALS TO BE FULLFILLED FOR THE CRYOPLANT



110 tons of cold mass to be cooled down from 300 to 1.8 K

2.4 tons of thermal shield to be cooled from 300 to 50 K

7400 liters of He II to be filled and to maintain at 1.8 K (1.95 K max with current)

#### Estimated heat loads:

He liquefier requirements

- > 20 W at 1.8 K (magnet + satellite) (tech :1 W à 1.8 K ⇔ 2.4 l/h)
- > 9 I/h LHe for current leads cooling
- 600 W at 50 K (magnet + satellite)
- > 27 W at 4.4 K (transfer lines and satellite)

40 W at 4.4 K

900 W at 50 K



#### **OTHERS POINTS TO BE FULLFILLED**



- Magnet continous operation : 24 h/day and 365 days/year
- Absorb losses induced by:
  - the pulsed gradient coils
  - slow discharge
  - fast discharge
- Secure the equipment in case of quench or vacuum failure
- Withstand any utility failure (electrical, water, compressed air)
- In case of a big cryoplant failure, maintain the magnet at 80 K maximum (LN2)
- Allow the maintenance actions without magnet desenergising
- Minimize manual actions on the process

#### Redundancy!



#### THE CRYOPLANT FOR THE MAGNET OPERATION







#### THE CRYOPLANT FOR THE MAGNET OPERATION





Cryoplant underground view



Control room



PLC



Power supply



He recovery



He gas buffers and LN2 tank



Cryogenic stallite



#### **A**IR LIQUIDE HELIUM LIQUEFIER





« HELIAL » Cold box

**Measured capacities:** 

120 l/h

or

200 W @ 4.4 K

or

**40 W + 81 l/h** (nominal mode)

Thermal shield circuit I/O 900 W @ 50/55 K

Cool down circuit 300-5 K



# **A**IR LIQUIDE LIQUEFIER





#### He compressor unit

2 compressor + 2 ORS for redundancy

2 x 132 kW

40 g/s at 14.5 abars each

Air cooling (2 x 25000 m3/h)



# **AIR LIQUIDE LIQUEFIER**





LHe dewar

**5000 liters** 

0.35% static losses

**Atmospheric heat exchangers** 

for by-passing cold box during 300 K-100 K cooling down

R: view before installation of the Cold Box



### **HELIUM PUMPING UNIT**





He compressor unit (Oerlikon)

Roots (2000 m3/h with VFD 20-100 Hz) + vane pumps (750 m3/h)

2 Units for redundancy

1 g/s at 13 mbars each (50 Hz)

#### Air + water cooling



Mass flow vs suction pressure for various roots speed



### HE PUMPING UNIT: 4-300 K HEATERS





Vacuum insulated electrical heaters installed on low pressure circuit between satellite and He pumping units (Cryodiffusion)

4-300 K / 8 kW

Low pressure drop (< 1 mbars @ 1 g/s))

2 heaters in parallel for redundancy



# CRYOLINE: VACUUM INSULATED CRYOGENIC MULTI-LINE



#### Magnet room

Satellite connection (vacuum barrier on satellite)





LN2 thermally shielded for safety LHe dewar

## Cryogenic room

#### Cold Box:

- Cool down circuit outlet
- Thermal shield I/O (50/55 K)
- GHe return from 4.4 K tank of satellite

He pumping unit line



#### **CRYOGENIC SATELLITE**





During tests at workshop

#### Interface for:

- Fluids
  - Hel
  - Hell saturated
  - Hell pressurized
  - LN2 and GHe
- Instrumentation
  - Magnet
  - Cryo
  - Safety
- Safety
- Electrical
  - 1500 A
  - Cryoshim
  - EIS
- Vacuum



(Cryodiffusion)



#### HE II CALODUC



He II pipe He andc LN2 circuits (shields, cool down) 1500 A busbars Cryoshim circuits EIS heaters







### FIRST step of cooling down: 300-120 K







- 110 tons to be cooled from 300 K to 120K
- 210 000 liters of LN2
- 7 weeks



#### SECOND STEP OF COOLING DOWN: 120 - 4.2 K







- 110 tons to be cooled 120 K 4.2K
- 50000 liters of LN2
- 5 weeks









- Filling the magnet with 7400 liters of He II
- Cooling down from 4,2K to 2.17 K then from 2.17 K to 1.8 K
- Complete the 5000 liters LHe Dewar
- Vaporiser 13 bidons de 1000 litres d'hélium dans le cycle
- 25000 liters of LN2
- 4 weeks

#### **COOLING DOWN**





A little bit long 🕾 but unique 😊 and with no He leak or unexpected heat loads : 😊

#### **MEASUREMENTS AT NOMINAL MODE**



#### **Measured heat losses:**

- > 12 W @ 1.8 K without current
- > 14 W @ 1.8 K with 1483 A (20 W estimated)
- > > 16 W @ 4.4 K (tbc)
- > 8.1 I/h for currents leads (8 I/h estimated)
- > 572 W with 38 K on magnet ThS and 41 K on satellite ThS (570 W estimated...)



#### 9.5 T THEN 11.72 T WITH SLOW DISCHARGE







#### 7 T THEN 10.5 T WITH FAST DISCHARGE





**Fast discharge** (normal contraction of the Hell bath under a significant heat deposit (eddy currents)!)



#### **NEXT STEPS**



- ➤ To continue to consolidate the control-command software by testing and analysing the maximum of fault scenarios modes (several « instructive » failures since one year of continuous mode...)
- ➤ To analyse the thermal effect (extra transient heat losses) of the pulsed gradient coils (not yet installed inside the magnet hole)
- ➤ To implement all the maintenance procedures, equipment and contracts with manuals for operators

### Thank you for your attention



And great acknowledgements to all the collaborators involved in this work...

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial | R.C.S Paris B 775 685 019

Direction de la Recherche Fondamentale Institut de recherche sur les lois fondamentales de l'Univers DACM