DE LA RECHERCHE À L'INDUSTRIE



# **Accelerator Magnets**



E. Rochepault

With contributions from H. Felice, C. Lorin

01/10/2019 EASISchool 2



#### **ACCELERATORS FOR HIGH ENERGY PHYSICS**



#### Large Hadron Collider

2013 Nobel Prize with the discovery of the Higgs Boson

Reliable operation at 6.5 TeV (13 TeV c.o.m)
Dipole Bore field: 7.7 T

Target 7 TeV (14 TeV c.o.m)
Dipole 8.33 T

# FCC-hh Future Circular Collider

100 km - <u>16 T</u> 100 TeV (c.o.m)



Courtesy of CERN

H. Felice, "Advances in Nb3Sn Accelerator Magnets", MT26

# HL-LHC:

**High Luminosity LHC** 

- Focusing triplet: Gradient of 132.6 T/m in a 150 mm bore
- 11 T Bending dipoles to allow space for new collimators

# SPPC Super Proton-Proton

100 km - **12-24 T** 75 to 150 TeV (c.o.m)

Collider

Courtesy of Q. Xu, IHEP





#### **MAGNETS REQUIRED IN ACCELERATORS**





Sextupoles and higher orders for correction

Quadrupoles for focusing



Dipoles for bending





#### THE NEED FOR SUPERCONDUCTORS



- The beam energy:
  - $E [GeV] = 0.3 \times B[T] \times \rho[m]$
  - → High energy → high field

- Advantages of superconductors:
  - $R = 0 \rightarrow \text{no power consumption}$
  - High current for high field
  - Compact coils
- Cons:
  - Cost
  - Delicate fabrication
  - Need cryogenics



Courtesy of Ezio Todesco (CERN)





#### **NBTI MAGNETS IN LHC**



# Large Hadron Collider

2013 Nobel Prize with the discovery of the Higgs Boson

Reliable operation at 6.5 TeV (13 TeV c.o.m)

Dipole Bore field: 7.7 T

Target 7 TeV (14 TeV c.o.m)
Dipole 8.33 T

FCC-hh Future Circular Collider

100 km - 16 T 100 TeV (c.o.m)



Courtesy of CERN

#### HL-LHC:

**High Luminosity LHC** 

HI-LHC PROJECT

- Focusing triplet: Gradient of 132.6 T/m in a 150 mm bore
- 11 T Bending dipoles to allow space for new collimators

\*?

SPPC
Super Proton-Proton
Collider

100 km - **12-24 T** 75 to 150 TeV (c.o.m)

Courtesy of Q. Xu, IHEP





#### **NBTI MAGNETS IN LHC**

P. Lee et al., Applied Superconductivity Center Applied Magnetic Field (T)





April 2014



#### **NBTI MAGNETS IN LHC**



1. Wires made of NbTi filaments in Cu matrix





2. Rutherford Cable

4. Coils assembled in the support structure





3. Coils wound with cables



5. Assembly in cryostat



### HL-LHC: 1st Use of NB<sub>3</sub>Sn in Accelerators



#### Large Hadron Collider

2013 Nobel Prize with the discovery of the Higgs Boson

Reliable operation at 6.5 TeV (13 TeV c.o.m)
Dipole Bore field: 7.7 T

Target 7 TeV (14 TeV c.o.m) Dipole 8.33 T

#### FCC-hh Future Circular Collider

100 km - 16 T 100 TeV (c.o.m)



Courtesy of CERN

# HL-LHC: High Luminosity LHC

chnology HI-LHC PROSECT

- Focusing triplet: Gradient of 132.6 T/m in a 150 mm bore
- 11 T Bending dipoles to allow space for new collimators

# SPPC Super Proton-Proton Collider

100 km - **12-24 T** 75 to 150 TeV (c.o.m)

Courtesy of Q. Xu, IHEP





# HL-LHC: 1st Use of NB<sub>3</sub>Sn in Accelerators







# HL-LHC: 1ST USE OF NB<sub>3</sub>SN IN ACCELERATORS



1. Wires made of Nb filaments

+Sn in Cu matrix









4. 650°C heat treatment to form the Nb<sub>3</sub>Sn phase





2. Rutherford Cable



3. Coils wound with cables

6. Coils assembled in the support structure



5. Coils impregnated with epoxy resin



7. Assembly in cryostat





# HL-LHC: 1ST USE OF NB<sub>3</sub>SN IN ACCELERATORS



Page 11

- 1. <u>11T project</u>: replace a 8T dipole with 2 11T dipoles → Save space for a collimator
- 1st dipole reached nominal → ready for tunnel in 10/2019



All four dipoles should be ready in April 2020





E. Rochepault

# HL-LHC: 1st Use of NB<sub>3</sub>Sn in Accelerators



2. MQXF project: install high gradient/high aperture quadrupoles in

the insertion regions

- 2 MQXFA prototypes tested
- Pre-series on its way
- Other prototypes to be tested
- Installation foreseen 2024-2025







Tue-Mo-Or7-03 Page 12



# HIGH FIELD NB<sub>3</sub>SN MAGNETS FOR FCC



#### Large Hadron Collider

2013 Nobel Prize with the discovery of the Higgs Boson

Reliable operation at 6.5 TeV (13 TeV c.o.m)
Dipole Bore field: 7.7 T

Target 7 TeV (14 TeV c.o.m)
Dipole 8.33 T



# HL-LHC:

**High Luminosity LHC** 



- Focusing triplet: Gradient of 132.6 T/m in a 150 mm bore
- 11 T Bending dipoles to allow space for new collimators

# SPPC Super Proton-Proton Collider

100 km - **12-24 T** 75 to 150 TeV (c.o.m)

Courtesy of Q. Xu, IHEP





# HIGH FIELD NB<sub>3</sub>SN MAGNETS FOR FCC







#### THE QUEST TOWARDS HIGH FIELD



HD2 (LBNL)
 R&D magnet,
 → 13,8 T in 2008









FRESCA2 (CERN/CEA)
 test station magnet → 14,6 T in 2018





Fermilab 15T dipole

R&D magnet, → 14,1 T in 2019 2<sup>nd</sup> test ongoing









# FCC: FUTURE HIGH FIELD NB<sub>3</sub>SN MAGNETS



- **CERN R&D: RMM**
- Racetrack Model Magnet
- 16 T model, flat coils
- Different assemblies
- Fabrication ongoing







**The Canted Cosine Theta** (CCT) concept - LBNL

- New technology
- Short models
- Tests ongoing





#### CCT R&D (PSI)

- Following LBNL concept
- Short models
- Fabrication ongoing











# FCC: FUTURE HIGH FIELD NB<sub>3</sub>SN MAGNETS



#### Falcon: CERN/INFN model

14 T demonstrator, conceptual design

16 T concept for FCC





#### • F2D2: CERN/CEA model

 15 T demonstrator, engineering design+mockups

• 16 T concept for FCC









#### CONCLUSION



- Superconducting magnets required in accelerators:
  - Compact, high current, low power consumption
- NbTi technology mastered in accelerators:
  - Used at a large scale, best example is LHC
  - But: limited practically to 8 T



- Nb<sub>3</sub>Sn technology mature:
  - Difficult coil fabrication
  - Used for the 1<sup>st</sup> time in HL-LHC, 11-12 T
- Nb<sub>3</sub>Sn for future accelerators:
  - FCC: challenging 15-16 T goal
     → strong R&D ongoing
  - Model magnets reached 14-15 T







# AND BEYOND NB<sub>3</sub>SN, ABOVE 16T?







# AND BEYOND NB<sub>3</sub>SN, ABOVE 16T?





See "HTS magnets", by T. Lecrevisse

DE LA RECHERCHE À L'INDUSTRIE



THANK YOU FOR YOUR ATTENTION!



E. Rochepault Tue-Mo-Or7-03