EASISchool 2 on Cryogenics

CEA (France)

September 30th – October 4th 2019

New cryogenic cooling techniques

Maria Barba, Romain Bruce*, Bertrand Baudouy*

romain.bruce@cea.fr bertrand.baudouy@cea.fr

Overview

- I. Existing cryogenic cooling techniques
- II. New cryogenic cooling techniques
- III. The SR2S project
- IV. The PHPs at the CEA
- V. Other configurations and applications

I. Cryogenic cooling techniques

- **Superconducting magnets** extensively used in high magnetic field applications:
 - Plasma confinement (fusion)
 - MRI (medical)
 - Beam focalization (accelerators)

Particle detection (research)

B(T)

Superconducting state reached in the "superconducting region" (Bc, Tc and Jc)

Need of cryogenic cooling techniques

normal state

I. Cryogenic cooling techniques

• Cryogenic cooling techniques: **direct** and **indirect** methods

Courtesy of B. Baudouy. Heat transfer and cooling techniques at low temperature, 2013.

New requirements:

- Small quantity of working fluid (to avoid He scarcities)
- Lightness and gravity independence (for space applications)
- Simple configuration
- To separate the magnet from the fringe field (distance around 1m)

Cooling solution: Cryogenic Pulsating Heat Pipes

Example of a novel cryogenic cooling technique:

- Pulsating (or Oscillating) Heat Pipes (PHP or OHP): two-phase thermal links consisting of a long capillary channel bent into many U-turns
- Condenser and evaporator separated by an adiabatic part
- Maximum inner diameter defined using the Bond dimensionless number

$$Bo = \frac{(\rho_l - \rho_v)gD^2}{\sigma} \le 4$$

$$D_{crit} \le 2\sqrt{\frac{\sigma}{g(\rho_l - \rho_v)}}$$

- Two-phase working fluid close to phase change conditions
- Distribution of the working fluid in alternating liquid slugs and vapor plugs
- Liquid film enables circulation of the vapor plugs sliding through the tube
- Thermally driven by an oscillating flow of liquid slugs and vapor plugs

Vapor plug

Liquid slug

Liquid film

- Two-phase working fluid close to phase change conditions
- Distribution of the working fluid in alternating liquid slugs and vapor plugs
- Liquid film enables circulation of the vapor plugs sliding through the tube
- Thermally driven by an oscillating flow of liquid slugs and vapor plugs

*Sameer Khandekar (2010)

III. The SR2S project

Space travel missions...

The problem: harmful radiation effects on biological tissues... as an example... A mission to Mars (2 years) has up to 40% risk of cancer death...

Solar Particle Events (SPE)
Protons and helium from Sun (High Flux – Low Energy)

Galactic Cosmic Rays (GCR)
Protons, helium and ions (Low Flux – High Energy)

One possible solution:

Active shield ... like the earth does! Deviating "bad" particles with the magnetic field!

Superconducting magnets surrounding space rockets!

(European project)

III. The SR2S project

Coils (10 K)

Internal shield (80 K) and cryogenic cooling system

Human habitat (300 K)

- Three PHPs with 12, 24 and 36 stainless steel capillary tubes (poor thermal conduction)
- Horizontal position (closest configuration to zero-gravity)
- 1 m long closed-PHP
- Diameters: **1.5 mm** (\emptyset_{inner}) and 2 mm (\emptyset_{outer}) Thermalized copper inlet tube Cold head -Copper thermal link PHP inlet 1 m Condenser parts Capillary inlet tube The working fluid is cooled and condensed in the thermalized copper tube Glass epoxy supports Adiabatic tubing parts **Evaporator parts**

Aluminum structure

- **Gas supply system** (gas tanks and buffer volumes 0.05 m³ each)
- Thermal shields and cryostat (estimated undesirable heat inputs 1 W)
- Pumping systems (ensure vacuum environment 10⁻⁴ 10⁻⁶ Pa)
- Data acquisition systems (sensors, acquisition cards, Labview program, etc.)
- Power supply systems

Ne: Neon gas tank

Ar: Argon gas tank

N₂: Nitrogen gas tank

PR: Pressure Regulator

VP: Vacuum Pump

BV: Buffer Volume

PHP: Pulsating Heat Pipes

APT: Absolute Pressure Transducer

V1, 2, ... : Valves

Progressive heat load tests: Nitrogen

- Specific filling process and initial conditions ($\Delta Ti = 5 \text{ K and } 5 \text{ W}$)
- Condenser fixed at 75 K / FR 42-43 % / closed configuration
- Heat load increased every 40 min (5-watts steps)

Fluid's behavior and thermodynamic characterization:

- Same pressure everywhere considered at saturation conditions
- Subcooled state of liquid parts
- Temperature peaks: local dry-outs and adiabatic compressions

Progressive heat load tests: Neon

- Specific filling process and initial conditions ($\Delta Ti = 5 \text{ K}$ and 5 W)
- Condenser fixed at 27 K / FR 25 % / closed configuration
- Heat load increased every 30 min (5-watts steps)

Progressive heat load tests: Argon

- Specific filling process and initial conditions ($\Delta Ti = 5 \text{ K and } 5 \text{ W}$)
- Condenser fixed at 89 K / FR 29-30 % / closed configuration

Working fluid	Nitrogen	Neon	Argon
Range of working temperatures	74 - 90 K	26 - 42 K	88 - 110 K
Boiling point at 1. 10 ⁵ Pa	77.3 K	27.1 K	87.3 K
Max. heat load (stable conditions)	20 – 25 W	50 W (?)	25 - 30 W

The PHPs for superconducting magnets applications:

Goal: **operating limits** of PHPs during transient heat load tests (**quench situations**)

Transient heat load tests:

5 W ➡ High heat load ➡ 5 W

Remarks:

Neon: higher ΔT but lower time duration to recover stable conditions (neon's steeper slope of the saturation curve)

Cp of copper at the ranges of **working temperatures** (neon's temperatures lower Cp so higher temperature increments)

- Oscillations of the adiabatic part (heat transferred)
- Stop-flows and increasing temperature (opening of the PHP)

V. Other configurations and applications

V. Other configurations and applications

Different applications \(\bigcirc \) different ranges of working temperatures!

 Cryopreservation: conservation of biological samples in cryogenic containers cooled with PHPs.

Cooling of electronics (quantum computers)

The common evaporator

Thank you for your attention!

Appendix

Long stability tests:

