ADIABATIC DEMAGNETIZATION REFRIGERATORS

JEAN-MARC DUVAL CEA-IRIG-DSBT, GRENOBLE, FRANCE

jean-marc.duval@cea.fr

EASI School Grenoble, FRANCE

► Introduction to ADR

- System descriptions
- Components
- Typical operation
- Efficiency

Practical details

- Key component : heat switches
- Operation modes
- State of the art

▶ Current developments and perspective

- Large scale operation
- Space applications
- Perspectives

Heart of the system: magnetocaloric material

(typically paramagnetic material)

- ► Magnetic system (e.g. superconductive coil)
 - B variation => T variation
 - ▶ Heat switch + thermal interface
 - => cryocooler
 - ► Ferromagnetic shield
 - => reduces outside perturbations

- ► Mechanical support
 - Thermally insulative (e.g. Kevlar)

Details of components

Paramagnetic material "pill"
Here CPA (chromic-potassium alum)
and « thermal bus » (=thermal interface)

ADR stage

Typical size L ~150 mm

Context of adiabatic demagnetization refrigerators

▶ Historical context

- First technique to reach T<0.8 K
- Demonstrated in 1933 (Giauque) to reach 0.53 then [De Haas et al] to reach 0.33 K
- Widely used in cryogenics laboratory until being replaced by dilution refrigerator (continuous cooling, high cooling power...)
- Other technique : nuclear demagnetization refrigerator : provides μK cooling, not discussed her

► Today's use and research

- Technique for cooling down to 2 mK, starting at ~4 K
- Renewed interest for space applications (and rockets)
- Relatively easy to use, combined with pulse tube coolers for ground applications

► Focus of this class

- ADR, from a practical point of view

Typical operation

Typical operation

Simple demagnetization or cold phase regulation

Regulation with no dissipation cost

More efficient than drift of temperature

Magnetic Carnot Cycle

► Equivalent to Carnot cycle, with magnetic field variation instead of pressure

J-M Duval, CEA-DSBT EASI School, Grenoble

► Meaningful for several cycles in a row

8

Magnetic Carnot cycle and schematic representation

Magnetic moment illustration

Courtesy D. Paixao Brasiliano

- ► Magnetocaloric effect due to variation in magnetic spin orientation and energy level
- Representation with spin direction for illustration

Choice of paramagnetic materials

Simplified theoretical model to predict paramagnetic material performances

In general, materials with low interactions between magnetic moment

- ► Aluns (T< 1 K) e.g. CMN, CPA, FPA: paramagnetic salts
- ► Garnets ([1K 10 K]), ex GGG (GdGa2O5), DGG (DyGa2O5), ...

See Pobell, « Matter and Methods at low temperature » for more on this topic

Efficiency

ADR is quasi reversible => follow Carnot ideal efficiency

Question:

- ADR cooler provides 2 μW @ 100 mK during 12 hour
- Losses (mecanical support, heat switch = $0.2 \mu W$.

- In general, efficiency defined as : $\eta = Qf / W$
- ► For very low temperature coolers, W not critical but Qc is crucial
- ► Efficiency defined as Qc/Qf. Theoretical value : Tc/Tf

Summary: Adiabatic Demagnetization Refrigerator

Superconducting coil
Magnetocaloric material
Heat switch

Electronic: temperature measurements and control of heat switch and magnetic field variations

Based on magnetocaloric effect

Part 2 – practical informations

- Key components : heat switch
- Operating modes: two stage, continuous ...
- State of the art

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Key component : heat switches

More than 3 different kinds of heat switches

Mechanical heat switches

Mechanically connect two parts

- Very good OFF position (virtually 0)
- Low ON position (depends on contact resistance)

Hagmann et Richards, 1995

Large force required for good ON conductivity

▶ Gas Gap Heat switches

Evacuate gas to pass OFF position

- Very good ON position (T>0.5 K)
- low OFF position

Concentric shape

e.g. Duband et al

Come shape

e.g. Shirron et al

Very reliable Low on conductivity below ~300 mK

Other technologies possible (e.g. magnetoresistive)

- Superconducting heat switches « break » superconductivity with magnetic field
 - Used for TON < 0.5 K
 - Care for low OFF position

Only T<0.5 K
High OFF conduction

▶ 2 stage systems – 1 single magnet

Stage 1 (b) acts as thermal screen
Stage 2 (a) provides 100 mK interface

Typical commercial solution. Active regulation (on one stage) is also possible

Continuous operation

Parallel or series configuration?

Parallel configuration

- Intuitive operation
- 4 heat switches required
- Better if limited power on warm interface

Series configuration

- Only 2 heat switches
- More stable last stage temperature
- Lower total mass

▶ In general, continuous operation achieved with series configuration

Continuous operation – series configuration

Series configuration

- ► Cold temperature regulated by control of magnetic field of second ADR stage
- ► Heat rejected to the warm stage through first stage

Question:

- An ADR cooler provides 1 μW @ 100 mK continuous operation
- Efficiency is 60% of Carnot

What is the average power deposited on the warm interface (2 K interface)?

Why only 60% efficiency?

Commercially available

'one shot' ADR Typically 4 K – 100 mK (ex: Janis, Entropy, ...)

Entropy-cryogenics

Space model

Space application (NASA/Goddard (P. Shirron) – USA

Example Hitomi satellite 50 mK measured in space Only 2 missions flown so far

J-M Duval, CEA-DSBT EASI School, Grenoble

Common project CEA - CNRS

Current research and perspectives : lower mass and materials quantities

- Large scale refrigeration
- Space application
- Space : reduced size operation

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Large scale refrigeration

ADR could be useful for much higher heat loads

- ► Several studies made, starting before the 1980's
 - SBT 1.35 W@1.8 K, 1984
 - Hitachi: 1.2 W @ 1.8 K, 1986
 - CERN design for up to 20 W cooling
 - Updated study (2017) by Tkaczub et a

A.Lacaze & al., Double acting reciprocating magnetic refrigerator

: recent improvements, 1984

Warm source (4.2 K)

Y.Hakuraku & al., Thermodynamic analysis of a magnetic refrigerator with static heat switches, 1986

Magnetic material

► Main driving factor for large scale refrigeration

- Fast cycle operation (faster => lower size of paramagnetic material) and cost
- Difficulty: heat flows and lower size => larger power per volume heat transfer
- Use of liquid (helium, helium flow, ...) heat transfer
- Heat switches (as previously presented) not adapted

Large developments needed to propose realistic cooler

Future developments between 10 μW and Watts or kWatts?

Application for space applications: 3 stages ADR

Some typical missions needs:

- ► Several mission needs with :
 - High cooling power requirements at 300 mK (20 50 μ W)
 - Low power requirement at 50 / 100 mK (0.5 2 μ W)
- ► Interface temperature of 1.7 to 3.0 K
 - Size dominated by 300 mK cooling

Proposed cooler with 300 mK continuous stage

New material studied : YbGG cooler for 300 mK continuous operations

► Types of coolers with 1.75 K interface

YbGG material 3 times lighter than equivalent CPA Advantageous solutions for these requirements

Magnetic system optimization

Measurements and modelling

Mass minimization

- Lower parasitic magnetic field
- Simple numerical simulation : Maxwell equations
- Uncertainties on magnetic properties (at low temperature)
- Knowledge / measurements of magnetizing curve required

Only few data on properties at cold temperature

conclusions

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Conclusion and perspectives

Magnetic refrigeration

► Interesting technique for low temperature operation (space, reliability, cost)

J-M Duval, CEA-DSBT EASI School, Grenoble

▶ Used for space and ground coolers

- ► Very interesting technology to work on (materials, magnetics, thermal, ...)
- ► Challenges for improvements for demanding applications, especially reduced mass or higher cooling power (material, magnetic, thermal)

Next CEA/DSBT prototype for high power (40 μ W) 300 mK cooling for space