

Turbo-Brayton cryogenic systems

An ideal solution for refrigeration

EASISchool2 - Oct 4th 2019 - Cécile Gondrand

Outline

- Introduction
- From conventional Brayton to Turbo-Brayton
- Product line range
- Example of applications
- Conclusion

Introduction

Turbo-Brayton - Introduction

- In order to produce cold
 - Compress gas
 - Expand gas
 - Heat exchanger to transfer the cold to an application

Classical Brayton refrigerators are composed of:

A lubricated screw compressor

An Oil Removal System (ORS)

A pressure management system

Cryogenic heat exchangers

A purification system (adsorber)

A cryogenic expander

Removal of the ORS

Removal of the pressure management system

Range

Turbo-Brayton – Range and applications

This product line is composed of standard products for refrigeration

 Product range
 TBF-80
 TBF-175
 TBF-350
 TBF-700
 TBF-1050
 TBF-1225

■ Range : 15 – 150 K

■ High efficiency > 40% Carnot

Turbo-Brayton – Cooling power vs temperature

Turbo-Brayton – Efficiency at partial load

- High efficiency is an advantage for full load, but even more at partial load. And that is exactly where most refrigerators operate.
 - At 60 % partial load, the overall efficiency of the refrigerator is only decreased by 3 %

The cold power is automatically adjusted from 0 to 100 % by varying the speed of the motor. No valves nor heater are needed.

Applications

References – TBF-80

References - HTS cable cooling

- What is Superconductive material?
 - Material with low electrical resistance and high magnetic field
 - Can be reached below a critical temperature

- High Temperature Superconductive cables can transit 5 to 10 times the electrical current of traditional copper or aluminum cables
 - Lower footprint
 - Higher currents can be transported
 - Ideal for long distance transportation or to increase current in saturated urban areas
 - Need of temperature below 77K

Typical HTS Cable Configuration

References - HTS cable cooling — TBF-175

References - HTS cable cooling - TBF-350

References – On-board reliquefaction of LNG BOG

References – Reliquefaction of LNG BOG – TBF-350

- Application
 - □ 6,500 m3 LNG bunker vessel

References – Reliquefaction of LNG BOG – TBF-1050

Application

□ 174 000 m3 LNG carriers

References – Reliquefaction of LNG BOG – TBF-1225

Conclusions

Turbo-Brayton – Main features

■ The key benefits of the Turbo Brayton

- Efficient solution thanks to smart process
 - Carnot efficiency > 40%
 - Turndown between 0% and 100% and high efficiency on all operation range
- Single skid solution
 - Easy installation
 - Plug and play design
 - Short start-up
 - Low foot-print
- **High reliability**: with contact free, oil free technology MTBF = 105 000 h
- Utility free: no compress air, no oil, no nitrogen or any process gas make-up
- **Drastically reduced maintenance** = few days each 5-years
- A complete range of products
 - Covering wide range of applications

Thank you for your attention

