Antimatter doesn't float up, but I wish it did

Marcelo Bovill

March 13, 2024

N/1 >	real	~ -	10		
IVIA			31.1		
		~ -	~~		

Motivation

- Weak Equivalence Principle (WEP)¹ ⇒ all massive particles (and antiparticles) should act the same under gravity.
- do anti-apples fall just like apples do?

¹Image credit: The Renaissance Mathematicus, 2019, Accessed: 12/03/2024, https: //thonyc.wordpress.com/2019/12/25/christmas-trilogy-2019-part-i-would-the-real_mr-newton-please-stand-up/ (~

Where do we get our antimatter from?

- Protons collide with a fixed metal target \Rightarrow **antiprotons**.
- **Positrons** are produced from radioactive isotopes (i.e. β^+)^{2,1}

Marco		
IVIAICE	ю п	SUVIII
	_	

Where do we get our antimatter from?

- Protons collide with a fixed metal target \Rightarrow **antiprotons**.
- **Positrons** are produced from radioactive isotopes (i.e. β^+)^{2,1}

N/larco	0.01
IVIAL	

Trapping Antihydrogen

- \bullet Antiprotons are cooled in a Penning trap, with $\sim \frac{1}{15}$ of antiprotons from ELENA being trapped^2
- Merged with the positrons to form antihydrogen within ALPHA-g and trapped in a magnetic field¹

Trapping Antihydrogen

- \bullet Antiprotons are cooled in a Penning trap, with $\sim \frac{1}{15}$ of antiprotons from ELENA being trapped^2
- Merged with the positrons to form antihydrogen within ALPHA-g and trapped in a magnetic field¹

ALPHA-g

- Antihydrogen atoms released by simultaneously ramping down the current in the magnetic coils.
- Annihilation products (e.g. pions) tracked in a **rTPC**.
- Expected 80 % of annihilation products in the lower half of the detector¹

ALPHA-g

- Antihydrogen atoms released by simultaneously ramping down the current in the magnetic coils.
- Annihilation products (e.g. pions) tracked in a **rTPC**.
- Expected **80** % of annihilation products in the lower half of the detector¹

ALPHA-g

- Antihydrogen atoms released by simultaneously ramping down the current in the magnetic coils.
- Annihilation products (e.g. pions) tracked in a **rTPC**.
- Expected **80** % of annihilation products in the lower half of the detector¹

Measuring g

- Repeated for different imposed biases (downward acceleration due to the magnetic field).
- E.g. A bias of -1g would counteract gravity, resulting in equal annihilations in the upper and lower regions of the detector¹.

Selections

- Events with *z*-position more than 0.2 m from the coil centres or that were between the mirror coil centres were removed.
- Events emerging between 10-20 s from the ramp-down were accepted.
- Selections were determined from $\pm 10g$ trials¹.

Reconstruction and Calibration

- $\pm 10g$ trials also used to calibrate the efficiencies of the upper and lower detector regions.
- Cosmic ray background suppressed using topological information from the rTPC and barrel scintillator.
- Asymmetries in the background field were corrected for using a measurement-based model¹.

ALPHA-g

Reconstruction and Calibration

- $\pm 10g$ trials also used to calibrate the efficiencies of the upper and lower detector regions.
- Cosmic ray background suppressed using topological information from the rTPC and barrel scintillator.
- Asymmetries in the background field were corrected for using a measurement-based model¹.

Reconstruction and Calibration

- $\pm 10g$ trials also used to calibrate the efficiencies of the upper and lower detector regions.
- Cosmic ray background suppressed using topological information from the rTPC and barrel scintillator.
- Asymmetries in the background field were corrected for using a measurement-based model¹.

Simulations

- Simulations ran for different values of the acceleration due to gravity of the antihydrogen.
- The probabilities of an antihydrogen atom escaping downwards, *P*_{dn}, were plotted against the bias¹.

Simulations

- Simulations ran for different values of the acceleration due to gravity of the antihydrogen.
- The probabilities of an antihydrogen atom escaping downwards, P_{dn} , were plotted against the bias¹.

Analysis and Results

- From a likelihood fit to the data, $\bar{g} = (0.75 \pm 0.13 (\text{statistical} + \text{systematic}) \pm 0.16 (\text{simulation}))g^1$.
- $\bar{g} \leq 0$ excluded at $\sim 3.5\sigma$.

Future Extensions

- The main goal is improving the precision on \bar{g} , effectively steepening the P_{dn} -bias curves²
- Cool anti-atoms further; Doppler laser cooling.
- At higher precision better simulations will also be required.
- Competing experiments: GBAR42 and AEgIS43¹

Future Extensions

- The main goal is improving the precision on \bar{g} , effectively steepening the P_{dn} -bias curves²
- Cool anti-atoms further; **Doppler laser cooling**.
- At higher precision better simulations will also be required.
- Competing experiments: GBAR42 and AEgIS43¹

Future Extensions

- The main goal is improving the precision on \bar{g} , effectively steepening the P_{dn} -bias curves²
- Cool anti-atoms further; **Doppler laser cooling**.
- At higher precision better simulations will also be required.
- Competing experiments: GBAR42 and AEgIS43¹

- Measured value of \bar{g} is consistent with a downward acceleration of 1g.
- Antihydrogen is shown to fall under gravity with a p-value of $2.9\times 10^{-4}.$
- This result paves the way for precision tests of the WEP¹.

- E. K. Anderson and et al. "Observation of the effect of gravity on the motion of antimatter". In: *Nature* 621.7980 (Sept. 2023), pp. 716–722. DOI: 10.1038/s41586-023-06527-1.
- [2] William Bertsche. Antimatter gravitation studies with trapped antihydrogen. Accessed: 12/04/2024. Oct. 2023. URL: https://indico.cern.ch/event/1334474/.