The case for a Muon Collider

Carl Jolly

Graduate symposium

Science and Technology Facilities Council

ISIS Neutron and Muon Source

Contents

- Future colliders
- Why muons?
- Muon collider complex
- Particle physics case
- Challenges to building a muon collider
- Muon collider news

ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

💥 (O) @isisneutronmuon

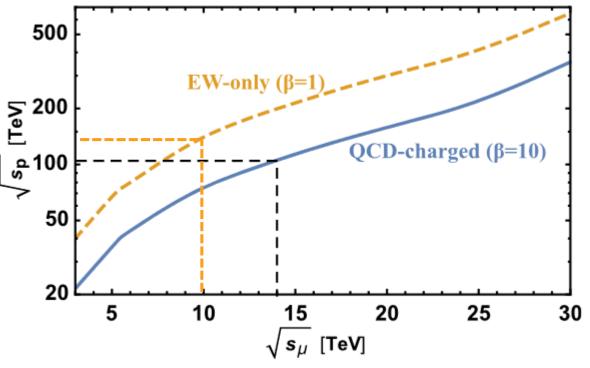
Collider comparison

Machine	Budget – according to Snowmass'21 (\$) 2023 prices	Centre of mass energy (TeV)	Maximum circumference /length (km)	Completion date	Will I be dead before it runs?
FCC-ee	13 - 20bn	0.37	~100km	2045	No
FCC-hh	34 – 56bn	100	~100km	Construction starts in 2060s	Maybe?
CLIC	7.8 – 13.5bn	0.38	~11km		
Muon collider - 3	7.8 – 13.5bn	3	~30km	2045*	No
Muon collider - 10	13.5 – 20bn	10	~30km	?	?

* Technically limited timeline

ISIS Neutron and

Muon Source


(O)

- FCC week Funding options and integration of the FCC ee construction and operation in CERN's financial plan Florian Sonnemann, CERN
- Report of the Snowmass 2021 Collider Implementation Task Force On the feasibility of future colliders: report of the Snowmass'21 Implementation Task Force, Roser et al
- @isisneutronmuon Towards a muon collider. The European Physical Journal C, 83(9), 864

Why muons?

- A lepton collider with out the drawback of synchrotron radiation.
- Unlike protons the entire centre of mass energy is available for the collision.

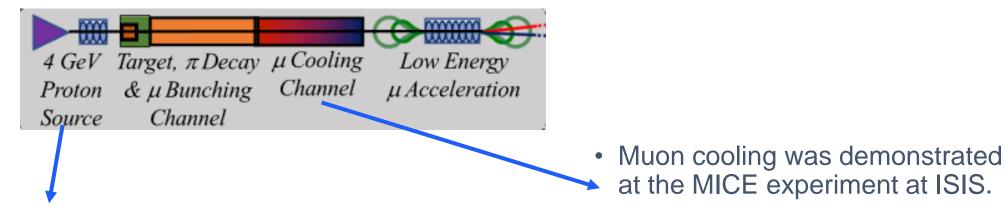
Towards a muon collider. *The European Physical Journal C*, *83*(9), 864

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

(O) @isisneutronmuon

The obvious problem...

- Why hasn't this been done already?
- Of course, muons decay in $\sim 2\mu S$
- However, since the muons are accelerated their decay time is time-dilated.
- The acceleration chain must be as fast as possible...
 - One of many challenges
 - For example the LHC ramps up in energy over many hours, the muon collider acceleration time is a few milliseconds (depending on the acceleration stage)

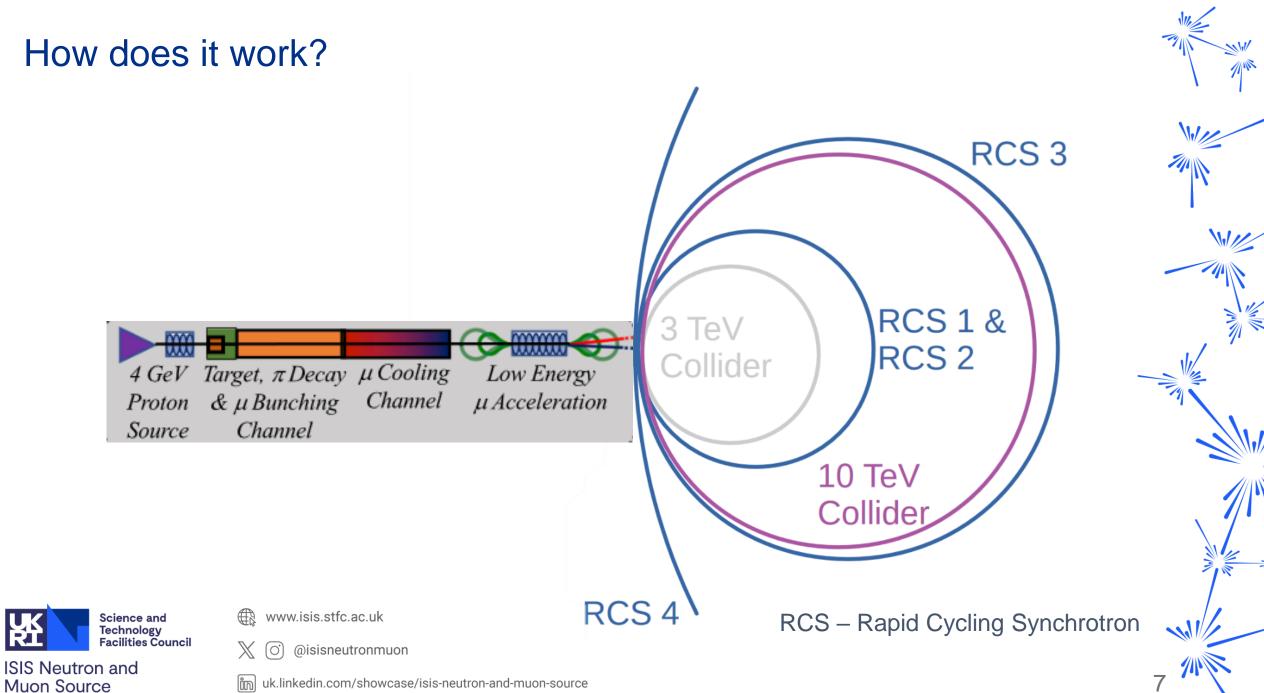


ISIS Neutron and Muon Source www.isis.stfc.ac.uk

(O) @isisneutronmuon

How does it work?

ISIS-II scale proton source


ISIS Neutron and Muon Source www.isis.stfc.ac.uk

 \mathbb{X}

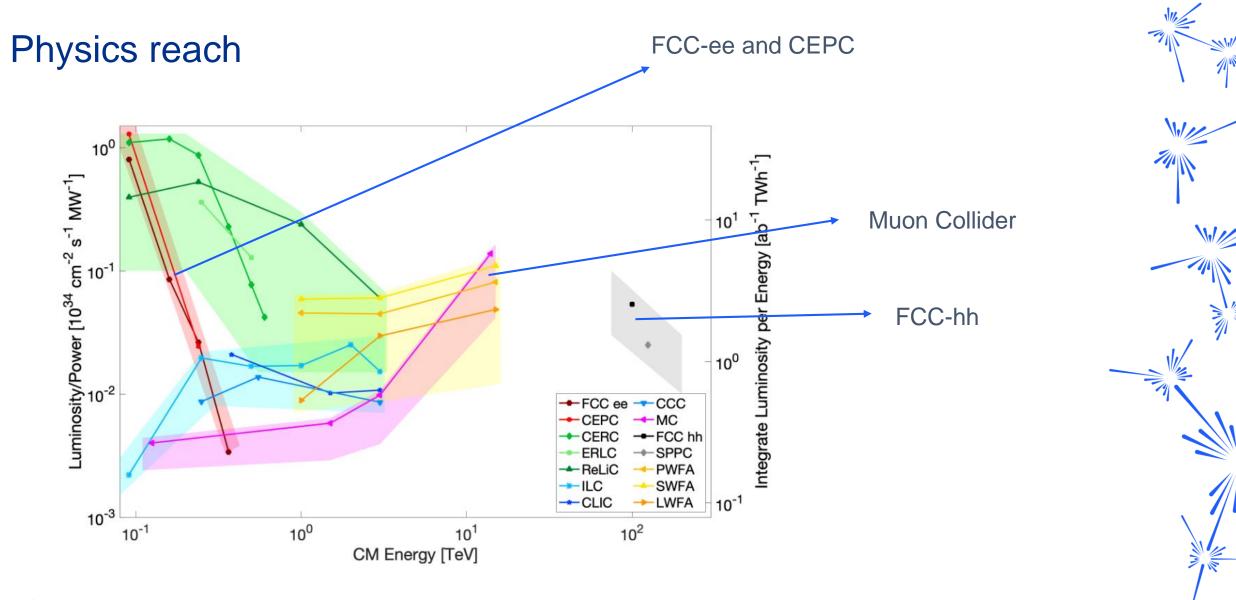
(O) @isisneutronmuon

Demonstration of cooling by the Muon Ionization Cooling Experiment – MICE collaboration, 2020

Physics reach

- High sensitivity than even FCC-hh for some BSM candidates in a 10 TeV muon collider.
- Wimp candidates are accessible for 10 TeV MuC
- A 3 TeV muon collider can access similar physics to CLIC and FCC-ee and some physics unique to muon-muon collisions.
- Difficult to access heavy particles that carry only QCD interactions proton colliders are better suited to this

The physics case of a 3 TeV muon collider stage, Jorge De Blas et al, Snowmass 2021


ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

(O) @isisneutronmuon

ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

X (o)

@isisneutronmuon

Report of the Snowmass 2021 Collider Implementation Task Force - On the feasibility of future colliders: report of the Snowmass'21 Implementation Task Force, Roser et al

71

9

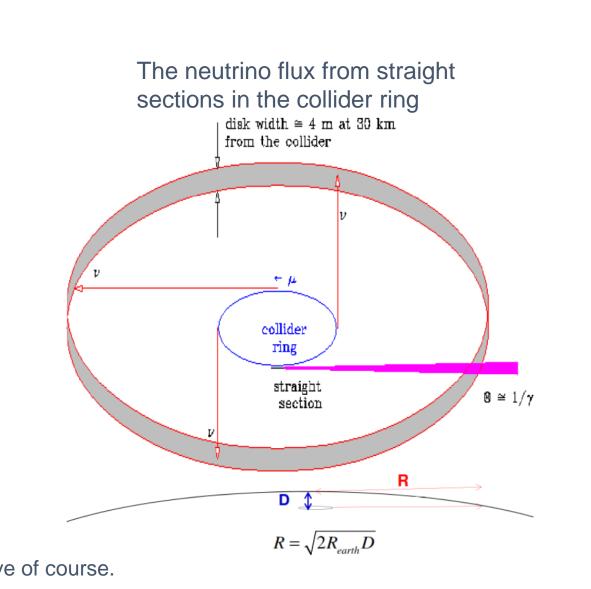
1.11

The problems*

- Certainly a higher risk option than FCC but... no 100km tunnel.
- Magnet ramping.
- Radiation load.
- Neutrino flux.
- Detector background.
- Muon cooling + demonstrator.
- ISIS-II scale high intensity proton source required.

*No particular order and not exhaustive of course.

ISIS Neutron and Muon Source (C) @isisneutronmuon


www.isis.stfc.ac.uk

Muon Collider Forum Report K. M. Black et al. Snowmass 2021

The problems*

- Certainly a higher risk option than FCC but... no 100km tunnel.
- Magnet ramping.
- Radiation load.
- Neutrino flux.
- Detector background.
- Muon cooling + demonstrator.
- ISIS-II scale high intensity proton source required.

*No particular order and not exhaustive of course.

ISIS Neutron and Muon Source 💥 (O) @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

www.isis.stfc.ac.uk

Muon Collider Forum Report K. M. Black et al. Snowmass 2021

Summary

- FCC ee physics at a lower cost
- Potential for FCC hh physics in the 10 TeV collider
- No 100km tunnel construction
- Emphasised in the US P5 report!

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

🕅 🔘 @isisneutronmuon

References

- MICE collaboration. Demonstration of cooling by the Muon Ionization Cooling Experiment. Nature 578, 53–59 (2020). <u>https://doi.org/10.1038/s41586-020-1958-9</u>
- Report of the Snowmass 2021 Collider Implementation Task Force On the feasibility of future colliders: report of the Snowmass'21 Implementation Task Force, Roser et al <u>https://doi.org/10.48550/arXiv.2208.06030</u>
- FCC week Funding options and integration of the FCC ee construction and operation in CERN's financial plan Florian Sonnemann, CERN <u>https://indico.cern.ch/event/1202105/contributions/5431438</u>
- Accettura, C., Adams, D., Agarwal, et al. (2023). Towards a muon collider. The European Physical Journal C, 83(9), 864. <u>https://doi.org/10.1140/epjc/s10052-023-11889-x</u>
- Muon Collider Forum Report K. M. Black et al. Snowmass 2021, https://arxiv.org/abs/2209.01318
- The physics case of a 3 TeV muon collider stage, Jorge De Blas et al, Snowmass 2021, <u>https://arxiv.org/abs/2203.07261v2</u>

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

O @isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

THE REAL PROPERTY OF