A collection of fun numerical methods that [might] lead us to Lattice QCD yes i think they're fun

Based on: Lattice QCD: a practical guide; SUPA lecture series by Christine Davies, and G. P. Lepage, Lattice QCD for Novices, hep-lat/0506036

Vithyaban Anjelo Narendran @ Graduate Symposium 2024

Assume you know of QCD

- Assume you know of QCD
- Problems when doing perturbation theory
 - Power series expansion in α_{s} , the QCD coupling constant.

- Assume you know of QCD
- Problems when doing perturbation theory
 - Power series expansion in α_{s} , the QCD coupling constant.
 - Blows up if α_s is large.

- Assume you know of QCD
- Problems when doing perturbation theory
 - Power series expansion in $\alpha_{\rm s}$, the QCD coupling constant.
 - Blows up if α_s is large.
- and properties of the bound states.

Calculate numerically the properties we want to know about in QCD - masses

Muon g-2 Houston, we have a result!

Position and Momentum Operators don't commute

$$\hat{H} = \frac{p^2}{2m} + V(x) [\hat{x}, \hat{p}] = i$$

Solve Schrödinger's equation.

$$\hat{H} = \frac{p^2}{2m} + V(x) [\hat{x}, \hat{p}] = i$$

Solve Schrödinger's equation. Find Eigenfunctions, Eigenvalues

$$\hat{H} = \frac{p^2}{2m} + V(x) [\hat{x}, \hat{p}] = i$$

Solve Schrödinger's equation. Find Eigenfunctions, Eigenvalues Partv!

Path Integral Formulation Transition Amplitude and Action

$K(x,t;x_i,t_i) = \langle x(t) \mid x_i(t_i) \rangle = \int \mathscr{D}x(t)e^{iS[x]}$

Path Integral Formulation Transition Amplitude and Action

Possible Path $K(x,t;x_i,t_i) = \left\langle x(t) \mid x_i(t_i) \right\rangle = \int \mathscr{D}x(t)e^{iS[x]}$

Path Integral Formulation Transition Amplitude and Action Possible Path $K(x,t;x_i,t_i) = \left\langle x(t) \mid x_i(t_i) \right\rangle = \int \mathscr{D}x(t)e^{iS[x]}$ Weighted by exponential

of classical action

Path Integral Formula Transition Amplitude and Action

 $K(x,t;x_i,t_i) = \langle x(t)$

 $S[x] \equiv \int_{t_i}^t dt L(x, \dot{x})$

ation
Possible Path

$$|x_{i}(t_{i})\rangle = \int \mathscr{D}x(t)e^{iS[x]}$$
Weighted by exponent
of classical action
Weighted by exponent
of classical action

Lagrangian

tial

Classical Paths and Quantum Fluctuations

Classical Paths and Quantum Fluctuations

Classical Paths and Quantum Fluctuations

tinitial

Classical Path Possible Path Possible Path 2

$\left\langle x \left| \exp\left(-iH(T)\right) \right| x_i \right\rangle = \sum_n \langle x \mid n \rangle \exp\left(-iE_nT\right) \langle n \mid | x_i \rangle$

$\sum_{n}^{\infty} \langle n \mid | n \rangle = 1$ $\lim_{n \to \infty} | \text{Insert}$ $\left\langle x \left| \exp\left(-iH(T)\right) \right| x_i \right\rangle = \sum_{n} \langle x \mid n \rangle \exp\left(-iE_nT\right) \left\langle n \mid | x_i \right\rangle$

$\sum_{n} \langle n \mid n \rangle = 1$ $\lim_{n \to \infty} |n| = 1$ $\int_{\text{Insert}} |n| = 1$ $\int_{\text{Insert}} |x_i| = 2$

Overlaps of Eigenstate with Position Eigenstate

$$\sum_{n} \langle x \mid n \rangle \exp\left(-iE_{n}T\right) \left\langle n \mid x_{i} \right\rangle$$

$x_i = x_f = x$

New Transition Amplitude
$$\left\langle x \mid e^{-H(T)} \mid x \right\rangle = \int \mathscr{D} x e^{-S[x]}$$

$x_i = x_f = x$

$x_i = x_f = x$

$S[x] \equiv \int_0^T dt L(x, \dot{x}) \equiv \int dt \left| \frac{m \dot{x}(t)^2}{2} + V(x(t)) \right|$

Weighting is \Re valued

New Transition Amplitude

$$\left\langle x \mid e^{-H(T)} \mid x \right\rangle = \int \mathscr{D} x e^{-S[x]} \qquad S[x] \equiv \int_{0}^{T} dt L(x, \dot{x}) \equiv \int dt \left[\frac{m \dot{x}(t)^{2}}{2} + V(x(t)) \right] dt$$
Weighting is \mathscr{B} valued

Inserting Eigenstates as before:

$$\left\langle x \mid e^{-H(T)} \mid x \right\rangle =$$

 $x_i = x_f = x$

vergnung is *s* valued

 $= \sum_{n} \psi_n^*(x) \psi_n(x) e^{-E_n T}$

New Transition Amplitude

$$\left\langle x \mid e^{-H(T)} \mid x \right\rangle = \int \mathscr{D} x e^{-S[x]} \qquad S[x] \equiv \int_{0}^{T} dt L(x, \dot{x}) \equiv \int dt \left[\frac{m \dot{x}(t)^{2}}{2} + V(x(t)) \right] dt$$
Weighting is \mathscr{B} valued

Inserting Eigenstates as before:

$$\left\langle x \mid e^{-H(T)} \mid x \right\rangle =$$

 $x_i = x_f = x$

vergnung is *s* valued

Decaying Exponential of all E Eigenstates $= \sum_{n} \psi_n^*(x) \psi_n(x) e^{-E_n T}$

New Transition Amplitude

$$\left\langle x \mid e^{-H(T)} \mid x \right\rangle = \int \mathscr{D} x e^{-S[x]} \qquad S[x] \equiv \int_{0}^{T} dt L(x, \dot{x}) \equiv \int dt \left[\frac{m \dot{x}(t)^{2}}{2} + V(x(t)) \right] dt$$
Weighting is \mathscr{B} valued

Inserting Eigenstates as before:

$$\left\langle x \mid e^{-H(T)} \mid x \right\rangle =$$

If we have large T, smallest E gets picked out -> Extract E_0

 $x_i = x_f = x$

verynning is 21 valueu

Decaying Exponential of all E Eigenstates $= \sum_{n} \psi_n^*(x) \psi_n(x) e^{-E_n T}$

Transition Amplitudes -> Eigenstates of the Hamiltonian -> Physics

 $\left\langle x(T) \left| x(t_2) x(t_1) \right| x(0) \right\rangle \qquad \int \mathcal{Q}$ $\langle x(T) \mid x(0) \rangle$

$$\mathscr{D}xx(t_2)x(t_1)e^{-S[x]}$$
$$\int \mathscr{D}xe^{-S[x]}$$

 $\left\langle x(T) \left| x(t_2) x(t_1) \right| x(0) \right\rangle$ $\langle x(T) \mid x(0) \rangle$

Average
$$x(t_1)x(t_2)$$

on each path

$$\mathscr{D}xx(t_2)x(t_1)e^{-S[x]} \\ \int \mathscr{D}xe^{-S[x]}$$

Average over all paths generated

$$\frac{\left\langle x(T) \left| x(t_2) x(t_1) \right| x(0) \right\rangle}{\left\langle x(T) \mid x(0) \right\rangle} = \frac{\int \mathscr{D} x x(t_2) x(t_1) e^{-S[x]}}{\int \mathscr{D} x e^{-S[x]}}$$

Plug a complete set of Eigenstates in as before:

$$= \left| \left\langle E_0 | x | E_1 \right\rangle \right|^2 e^{-(E_1 - E_0)(t_2 - t_1)}, t_2 - t_1 \to \infty$$

Average
$$x(t_1)x(t_2)$$

on each path

Average over all paths generated

$$\frac{\left\langle x(T) \left| x(t_2) x(t_1) \right| x(0) \right\rangle}{\left\langle x(T) \mid x(0) \right\rangle} = \frac{\int \mathscr{D} x x(t_2) x(t_1) e^{-S[x]}}{\int \mathscr{D} x e^{-S[x]}}$$

Plug a complete set of Eigenstates in as before:

$$= \left| \left\langle E_0 \left| x \right| E_1 \right\rangle \right|^2 e^{-(E_1 - E_0)(t_2 - t_1)}, t_2 - t_1 \to \infty$$
Matrix Element

Average
$$x(t_1)x(t_2)$$

on each path

Average over all paths generated

$$\frac{\left\langle x(T) \left| x(t_2) x(t_1) \right| x(0) \right\rangle}{\left\langle x(T) \mid x(0) \right\rangle} = \frac{\int \mathscr{D} x x(t_2) x(t_1) e^{-S[x]}}{\int \mathscr{D} x e^{-S[x]}}$$

Plug a complete set of Eigenstates in as before:

$$= \left| \left\langle E_0 \, | \, x \, | \, E_1 \right\rangle \right|^2 e^{-(E_1 - E_0)(t_2 - t_1)}, t_2 - t_1 \to \infty$$
Matrix Element Excitation Energy between ground and f

Average
$$x(t_1)x(t_2)$$

on each path

Average over all paths generated

first excited state

Calculating the Path Integral Numerically Discretise Time

Divide up the line from $t_i \rightarrow t_f$ to a set of points

Calculating the Path Integral Numerically Discretise Time

Divide up the line from $t_i \rightarrow t_f$ to a set of points

 $\int \mathscr{D}x(t) = \int dx_1 dx_2 \dots dx_n$

Calculating the Path Integral Numerically Discretise Time

Divide up the line from $t_i \rightarrow t_f$ to a set of points

Value of x at t_n $\int \mathscr{D}x(t) = \int dx_1 dx_2 \dots dx_n$

Calculating the Path Integral Numerically Discretise Time

Divide up the line from $t_i \rightarrow t_f$ to a set of points

Integrate over all the possible values of x for each x_i

n-dimensional integral

Value of x at t_n $\int \mathscr{D}x(t) = \int dx_1 dx_2 \dots dx_n$

Call $t_{j+1} - t_j = a$, the lattice spacing

$$\int_{t_j}^{t_{j+1}} dt L \approx a \left[\frac{m}{2} \left(\frac{x_{j+1} - x_j}{a} \right) \right]$$

Call $t_{i+1} - t_i = a$, the lattice spacing

$$\int_{t_j}^{t_{j+1}} dt L \approx a \left[\frac{m}{2} \left(\frac{x_{j+1} - x_j}{a} \right) \right]$$

Call $t_{i+1} - t_i = a$, the lattice spacing

 $\dot{x}(t)^2$ between t_{i+1} and t_i **Euler Method**

Call $t_{i+1} - t_i = a$, the lattice spacing

 $\int_{t_i}^{t_{j+1}} dt L \approx a \left[\frac{m}{2} \left(\frac{x_{j+1} - x_j}{a} \right)^2 - \frac{1}{2} \left(V\left(x_{j+1}\right) + V\left(x_j\right) \right) \right]$ $\dot{x}(t)^2$ between t_{i+1} and t_i **Euler Method**

A discretisation of the potential

Moving to QCD The Path Integral in QCD

Weighted by the exponential of the QCD action

Moving to QCD Build a Lattice

Moving to QCD Impose Periodic Boundary Conditions

4D Doughnut?

Rendering error: Try installing additional dimensions via: sudo apt-get xtra-dims

Finishing Up

- Path Integrals for Eigenstates, and useful physics
- Calculating excited states (particles)
- Discretisation
- Make-up of the lattice
- There are so very many cool things in this field
- Big thanks to Christine Davies Physicist in Lattice QCD

More on the Lattice Local Gauge Invariance of QFTs

 $\mathscr{L}_{OED}(x) = -\frac{1}{4}F_{\mu\nu}(x)F^{\mu\nu}(x) + \bar{\psi}(x)(\gamma \cdot D + m)\psi(x)$ $F_{\mu\nu}(x) = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x)$ $D_{\mu} = \partial_{\mu} + ieA_{\mu}(x)$

 $A_{\mu}^{(g)} = A_{\mu} - \partial_{\mu}\omega(x)$

Photon field 'picks up' the difference of the gauge transformation - at the ends of a 'Link'

More on the Lattice QCD Lagrangian

$\mathscr{L}_{QCD}(x) = -\frac{1}{4} F^a_{\mu\nu}(x) F^{\mu\nu,a}(x) + \bar{\psi}(x)(\gamma \cdot D + m)\psi(x)$

More on the Lattice Local Gauge Invariance of QFTs

$$\mathscr{L}_{QED}(x) = -\frac{1}{4}F_{\mu\nu}(x)$$

 $F_{\mu\nu}(x) =$

 D_{μ} =

 $\psi^{(g)} = e^{ie\omega(x)}\psi$

 $A^{(g)}_{\mu}$

 $F^{\mu\nu}(x) + \bar{\psi}(x)(\gamma \cdot D + m)\psi(x)$

$$= \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x)$$

$$= \partial_{\mu} + ieA_{\mu}(x)$$

$$\Omega(x) = e^{ie\omega(x)}$$

$$\psi, \bar{\psi}^{(g)}(x) = e^{-ie\omega(x)}\bar{\psi}(x)$$

$$= A_{\mu} - \partial_{\mu}\omega(x)$$