
Vithyaban Anjelo Narendran @ Graduate Symposium 2024

A collection of fun numerical 
methods that [might] lead us to 
Lattice QCD
yes i think they’re fun

Based on: Lattice QCD: a practical guide; SUPA lecture series by Christine Davies,

and G. P. Lepage, Lattice QCD for Novices, hep-lat/0506036
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Quick Intro
Immediately starts assuming things

• Assume you know of QCD


• Problems when doing perturbation theory


• Power series expansion in , the QCD coupling constant.


• Blows up if  is large. 


• Calculate numerically the properties we want to know about in QCD - masses 
and properties of the bound states.

αs

αs
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Muon g-2
Houston, we have a result!

Borsanyi, S., et al. Leading hadronic 


contribution to the muon magnetic moment


from lattice QCD. Nature 593, 51–55 (2021)
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Quantum Mechanics
1 particle, 1 dimension

Ĥ = p2

2m + V(x)

[ ̂x, ̂p] = i

Hamiltonian

Kinetic Energy

Potential

Position and Momentum Operators don’t commute 
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Quantum Mechanics
1 particle, 1 dimension

Ĥ = p2

2m + V(x) [ ̂x, ̂p] = i

• Solve Schrödinger’s equation.

• Find Eigenfunctions, Eigenvalues

• Party!
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Path Integral Formulation
Transition Amplitude and Action

K (x, t; xi, ti) = ⟨x(t) ∣ xi (ti)⟩ = ∫ 𝒟x(t)eiS[x]

6



Path Integral Formulation
Transition Amplitude and Action

K (x, t; xi, ti) = ⟨x(t) ∣ xi (ti)⟩ = ∫ 𝒟x(t)eiS[x]

Possible Path

6



Path Integral Formulation
Transition Amplitude and Action

K (x, t; xi, ti) = ⟨x(t) ∣ xi (ti)⟩ = ∫ 𝒟x(t)eiS[x]

Possible Path

Weighted by exponential

 of classical action

6



Path Integral Formulation
Transition Amplitude and Action

K (x, t; xi, ti) = ⟨x(t) ∣ xi (ti)⟩ = ∫ 𝒟x(t)eiS[x]

S[x] ≡ ∫ t
ti

dtL(x, ·x) ≡ ∫ dt [ m ·x(t)2

2 − V(x(t))]

Possible Path

Weighted by exponential

 of classical action

Lagrangian
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Classical Paths and Quantum Fluctuations
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Classical Paths and Quantum Fluctuations
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Connecting to the Eigenstates of the Hamiltonian
Inserting Hamiltonian via time evolution

⟨x exp (−iH (T)) xi⟩ = ∑n ⟨x ∣ n⟩exp (−iEnT) ⟨n ∣ ∣ xi⟩
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Connecting to the Eigenstates of the Hamiltonian
Inserting Hamiltonian via time evolution

⟨x exp (−iH (T)) xi⟩ = ∑n ⟨x ∣ n⟩exp (−iEnT) ⟨n ∣ ∣ xi⟩
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Energy Eigenstates in the Sum



We Rotate Time 
Minkowski -> Euclidean space-time ( )t → − it

xi = xf = x
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We Rotate Time 
Minkowski -> Euclidean space-time ( )t → − it

xi = xf = x

⟨x e−H(T) x⟩ = ∫ 𝒟xe−S[x] S[x] ≡ ∫ T
0

dtL(x, ·x) ≡ ∫ dt [ m ·x(t)2

2 + V(x(t))]

⟨x e−H(T) x⟩ = ∑n ψ*n (x)ψn(x)e−EnT

New Transition Amplitude

Inserting Eigenstates as before:
Weighting is  valuedℜ

Decaying Exponential of all E Eigenstates

If we have large T, smallest E gets picked out -> Extract E0
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Transition Amplitudes -> Eigenstates of the Hamiltonian 
-> Physics



Excited States

⟨x(T) x(t2)x(t1) x(0)⟩
⟨x(T) ∣ x(0)⟩

=
∫ 𝒟xx(t2)x(t1)e−S[x]

∫ 𝒟xe−S[x]
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Excited States

⟨x(T) x(t2)x(t1) x(0)⟩
⟨x(T) ∣ x(0)⟩

=
∫ 𝒟xx(t2)x(t1)e−S[x]

∫ 𝒟xe−S[x]

Average  

on each path

x(t1)x(t2)

Average over all paths generated 

11



Excited States

⟨x(T) x(t2)x(t1) x(0)⟩
⟨x(T) ∣ x(0)⟩

=
∫ 𝒟xx(t2)x(t1)e−S[x]

∫ 𝒟xe−S[x]

= ⟨E0 |x |E1⟩
2

e−(E1 − E0)(t2 − t1), t2 − t1 → ∞

Average  

on each path

x(t1)x(t2)

Average over all paths generated 

Plug a complete set of Eigenstates in as before:

11



Excited States

⟨x(T) x(t2)x(t1) x(0)⟩
⟨x(T) ∣ x(0)⟩

=
∫ 𝒟xx(t2)x(t1)e−S[x]

∫ 𝒟xe−S[x]

= ⟨E0 |x |E1⟩
2

e−(E1 − E0)(t2 − t1), t2 − t1 → ∞

Average  

on each path

x(t1)x(t2)

Average over all paths generated 

Plug a complete set of Eigenstates in as before:

Matrix Element
11



Excited States

⟨x(T) x(t2)x(t1) x(0)⟩
⟨x(T) ∣ x(0)⟩

=
∫ 𝒟xx(t2)x(t1)e−S[x]

∫ 𝒟xe−S[x]

= ⟨E0 |x |E1⟩
2

e−(E1 − E0)(t2 − t1), t2 − t1 → ∞

Average  

on each path

x(t1)x(t2)

Average over all paths generated 

Plug a complete set of Eigenstates in as before:

Matrix Element Excitation Energy between ground and first excited state
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Calculating the Path Integral Numerically
Discretise Time

Divide up the line from  to a set of pointsti → tf
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Calculating the Path Integral Numerically
Discretise Time

∫ 𝒟x(t) = ∫ dx1dx2…dxn

Value of  at x tn

Divide up the line from  to a set of pointsti → tf

Integrate over all the possible values of  for each x xj

n-dimensional integral
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Calculating the Path Integral Numerically
Discretising the Action

∫ tj+1

tj
dtL ≈ a [ m

2 ( xj+1 − xj

a )
2

− 1
2 (V (xj+1) + V (xj))]

Call , the lattice spacingtj+1 − tj = a
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Calculating the Path Integral Numerically
Discretising the Action

∫ tj+1

tj
dtL ≈ a [ m

2 ( xj+1 − xj

a )
2

− 1
2 (V (xj+1) + V (xj))]

Call , the lattice spacingtj+1 − tj = a

 between  and ·x(t)2 tj+1 tj

A discretisation of the potential
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Euler Method



Moving to QCD
The Path Integral in QCD

∫ 𝒟Aμ𝒟ψ𝒟ψ̄e−SQCD

Gluon Fields

Quark, anti-quark fields

Weighted by the exponential of the QCD action
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Moving to QCD
Build a Lattice
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Moving to QCD
Impose Periodic Boundary Conditions
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4D Doughnut?
Rendering error: Try installing additional dimensions via: sudo apt-get xtra-dims



Finishing Up

• Path Integrals for Eigenstates, and useful physics


• Calculating excited states (particles)


• Discretisation 


• Make-up of the lattice


• There are so very many cool things in this field 


• Big thanks to Christine Davies - Physicist in Lattice QCD
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More on the Lattice
Local Gauge Invariance of QFTs

ℒQED(x) = − 1
4 Fμν(x)Fμν(x) + ψ̄(x)(γ ⋅ D + m)ψ(x)

Fμν(x) = ∂μAν(x) − ∂νAμ(x)

Dμ = ∂μ + ieAμ(x)

Ω(x) = eieω(x)

ψ(g) = eieω(x)ψ

A(g)
μ = Aμ − ∂μω(x)

U(1) rotations:

ψ̄(g)(x) = e−ieω(x)ψ̄(x)

Photon field ‘picks up’ the difference of the gauge transformation - at the ends of a ‘Link’

Rotate about a point



More on the Lattice
QCD Lagrangian

ℒQCD(x) = − 1
4 Fa

μν(x)Fμν,a(x) + ψ̄(x)(γ ⋅ D + m)ψ(x)



More on the Lattice
Local Gauge Invariance of QFTs

ℒQED(x) = − 1
4 Fμν(x)Fμν(x) + ψ̄(x)(γ ⋅ D + m)ψ(x)

Fμν(x) = ∂μAν(x) − ∂νAμ(x)

Dμ = ∂μ + ieAμ(x)

Ω(x) = eieω(x)

ψ (g) = eieω(x)ψ, ψ̄ (g)(x) = e−ieω(x)ψ̄(x)

A(g)
μ = Aμ − ∂μω(x)


