A collection of fun numerical methods that [might] lead us to Lattice QCD

yes i think they're fun

Based on: Lattice QCD: a practical guide; SUPA lecture series by Christine Davies,
and G. P. Lepage, Lattice QCD for Novices, hep-lat/0506036
Vithyaban Anjelo Narendran @ Graduate Symposium 2024

Quick Intro

Immediately starts assuming things

- Assume you know of QCD

Quick Intro

Immediately starts assuming things

- Assume you know of QCD
- Problems when doing perturbation theory
- Power series expansion in α_{s}, the QCD coupling constant.

Quick Intro

Immediately starts assuming things

- Assume you know of QCD
- Problems when doing perturbation theory
- Power series expansion in α_{s}, the QCD coupling constant.
- Blows up if α_{s} is large.

Quick Intro

Immediately starts assuming things

- Assume you know of QCD
- Problems when doing perturbation theory
- Power series expansion in α_{s}, the QCD coupling constant.
- Blows up if α_{s} is large.
- Calculate numerically the properties we want to know about in QCD - masses and properties of the bound states.

Muon g-2

Houston, we have a result!

Quantum Mechanics

$$
\hbar=c=1
$$

1 particle, 1 dimension

$$
[\hat{x}, \hat{p}]=i
$$

Position and Momentum Operators don't commute

Quantum Mechanics

1 particle, 1 dimension

$$
\hat{H}=\frac{p^{2}}{2 m}+V(x) \quad[\hat{x}, \hat{p}]=i
$$

- Solve Schrödinger's equation.

Quantum Mechanics

1 particle, 1 dimension

$$
\hat{H}=\frac{p^{2}}{2 m}+V(x) \quad[\hat{x}, \hat{p}]=i
$$

- Solve Schrödinger's equation.
- Find Eigenfunctions, Eigenvalues

Quantum Mechanics

1 particle, 1 dimension

$$
\hat{H}=\frac{p^{2}}{2 m}+V(x) \quad[\hat{x}, \hat{p}]=i
$$

- Solve Schrödinger's equation.
- Find Eigenfunctions, Eigenvalues
-

Party!

Path Integral Formulation

Transition Amplitude and Action

$$
K\left(x, t ; x_{i}, t_{i}\right)=\left\langle x(t) \mid x_{i}\left(t_{i}\right)\right\rangle=\int \mathscr{D} x(t) e^{i S[x]}
$$

Path Integral Formulation

Transition Amplitude and Action

$$
K\left(x, t ; x_{i}, t_{i}\right)=\left\langle x(t) \mid x_{i}\left(t_{i}\right)\right\rangle=\int \mathscr{D} \stackrel{\downarrow}{x}(t) e^{i S[x]}
$$

Path Integral Formulation

Transition Amplitude and Action

$$
K\left(x, t ; x_{i}, t_{i}\right)=\left\langle x(t) \mid x_{i}\left(t_{i}\right)\right\rangle=\int_{\bar{D} \dot{x}(t) e^{i S[x]}}^{\substack{\text { Possible Path }}}
$$

Weighted by exponential of classical action

Path Integral Formulation

Transition Amplitude and Action

$$
K\left(x, t ; x_{i}, t_{i}\right)=\left\langle x(t) \mid x_{i}\left(t_{i}\right)\right\rangle=\int_{\bar{D} \dot{x}(t) e^{i S[x]}}^{\substack{\text { Possible Path }}}
$$

Weighted by exponential

$$
S[x] \equiv \int_{t_{i}}^{t} d t L(x, \dot{x}) \equiv \int d t\left[\frac{m \dot{x}(t)^{2}}{2}-V(x(t))\right]
$$

Lagrangian

Classical Paths and Quantum Fluctuations

Classical Paths and Quantum Fluctuations

Classical Paths and Quantum Fluctuations

Connecting to the Eigenstates of the Hamiltonian

 Inserting Hamiltonian via time evolution$$
\langle x| \exp (-i H(T))\left|x_{i}\right\rangle=\sum_{n}\langle x \mid n\rangle \exp \left(-i E_{n} T\right)\langle n|\left|x_{i}\right\rangle
$$

Connecting to the Eigenstates of the Hamiltonian

 Inserting Hamiltonian via time evolution$$
\begin{aligned}
& \sum_{n}\langle n||n\rangle=1 \\
& \langle x| \exp (-i H(T))\left|x_{i}\right\rangle=\sum_{n}\langle x \mid n\rangle \exp \left(-i E_{n} T\right)\langle n|\left|x_{i}\right\rangle
\end{aligned}
$$

Connecting to the Eigenstates of the Hamiltonian

 Inserting Hamiltonian via time evolution$$
\begin{array}{cc}
\sum_{n}\langle n||n\rangle=1 & \text { Overlaps of Eigenstate with Position Eigenstate } \\
\langle x| \exp (-i H(T))\left|x_{i}\right\rangle=\sum_{n}\langle x \mid n\rangle \exp \left(-i E_{n} T\right)\langle n|\left|x_{i}\right\rangle
\end{array}
$$

Connecting to the Eigenstates of the Hamiltonian

 Inserting Hamiltonian via time evolution$$
\begin{gathered}
\sum_{n}^{n}\langle n||n\rangle=1 \\
\langle x| \operatorname{lexp}(-i H(T))\left|x_{i}\right\rangle=\sum_{n}\langle x \mid n\rangle \exp \left(-i E_{n} T\right)\langle n|\left|x_{i}\right\rangle \\
=\sum_{n} \psi_{n}^{*}\left(x_{i}\right) \psi_{n}(x) \exp \left(-i E_{n} T\right)
\end{gathered}
$$

Connecting to the Eigenstates of the Hamiltonian

 Inserting Hamiltonian via time evolution$$
\begin{gathered}
\sum_{n}\langle n||n\rangle=1 \quad\left|\begin{array}{c}
\mid \text { Insert } \\
\left\langle x^{2}\right| \exp (-i H(T))
\end{array} x_{i}\right\rangle=\sum_{n}\langle x \mid n\rangle \exp \left(-i E_{n} T\right)\langle n|\left|x_{i}\right\rangle \\
=\sum_{n} \psi_{n}^{*}\left(x_{i}\right) \psi_{n}(x) \exp \left(-i E_{n} T\right)
\end{gathered}
$$

\square

We Rotate Time
 $$
x_{i}=x_{f}=x
$$

Minkowski -> Euclidean space-time ($t \rightarrow-i t$)

We Rotate Time
 $$
x_{i}=x_{f}=x
$$

Minkowski -> Euclidean space-time ($t \rightarrow-i t$)
New Transition Amplitude

$$
\langle x| e^{-H(T)}|x\rangle=\int \mathscr{D} x e^{-S[x]}
$$

We Rotate Time

$$
x_{i}=x_{f}=x
$$

Minkowski -> Euclidean space-time $(t \rightarrow-i t)$

$$
\begin{gathered}
\text { New Transition Amplitude } \\
\langle x| e^{-H(T)}|x\rangle=\int \mathscr{D} x e^{-S[x]} \quad S[x] \equiv \int_{0}^{T} d t L(x, \dot{x}) \equiv \int d t\left[\frac{m \dot{x}(t)^{2}}{2}+V(x(t))\right]
\end{gathered}
$$

Weighting is \Re valued

We Rotate Time

$$
x_{i}=x_{f}=x
$$

Minkowski -> Euclidean space-time $(t \rightarrow-i t)$

$$
\begin{aligned}
& \text { New Transition Amplitude } \\
& \langle x| e^{-H(T)}|x\rangle=\int \mathscr{D} x e^{-S[x]} \quad S[x] \equiv \int_{0}^{T} d t L(x, \dot{x}) \equiv \int d t\left[\frac{m \dot{x}(t)^{2}}{2}+V(x(t))\right] \\
& \text { Inserting Eigenstates as before: }
\end{aligned}
$$

$$
\langle x| e^{-H(T)}|x\rangle=\sum_{n} \psi_{n}^{*}(x) \psi_{n}(x) e^{-E_{n} T}
$$

We Rotate Time

$$
x_{i}=x_{f}=x
$$

Minkowski -> Euclidean space-time $(t \rightarrow-i t)$

$$
\langle x| e^{\quad \text { New Transition Amplitude }} \mathbf{- H (T)}|x\rangle=\int \mathscr{D} x e^{-S[x]} \quad S[x] \equiv \int_{0}^{T} d t L(x, \dot{x}) \equiv \int d t\left[\frac{m \dot{x}(t)^{2}}{2}+V(x(t))\right]
$$

Inserting Eigenstates as before:
Decaying Exponential of all E Eigenstates

$$
\langle x| e^{-H(T)}|x\rangle=\sum_{n} \psi_{n}^{*}(x) \psi_{n}(x) e^{-E_{n} T}
$$

We Rotate Time

$$
x_{i}=x_{f}=x
$$

Minkowski -> Euclidean space-time $(t \rightarrow-i t)$

$$
\langle x| e^{-H(T)}|x\rangle=\int \mathscr{D} x e^{-S[x]} \quad S[x] \equiv \int_{0}^{T} d t L(x, \dot{x}) \equiv \int d t\left[\frac{m \dot{x}(t)^{2}}{2}+V(x(t))\right]
$$

Inserting Eigenstates as before:

$$
\langle x| e^{-H(T)}|x\rangle=\sum_{n} \psi_{n}^{*}(x) \psi_{n}(x) e^{-E_{1} T}
$$

If we have large T, smallest E gets picked out -> Extract E_{0}

Transition Amplitudes -> Eigenstates of the Hamiltonian
 -> Physics

Excited States

$$
\frac{\langle x(T)| x\left(t_{2}\right) x\left(t_{1}\right)|x(0)\rangle}{\langle x(T) \mid x(0)\rangle}=\frac{\int \mathscr{D} x x\left(t_{2}\right) x\left(t_{1}\right) e^{-S[x]}}{\int \mathscr{D} x e^{-S[x]}}
$$

Excited States

$$
\frac{\langle x(T)| x\left(t_{2}\right) x\left(t_{1}\right)|x(0)\rangle}{\langle x(T) \mid x(0)\rangle}=\frac{\int \mathscr{D} x x\left(t_{2}\right) x\left(t_{1}\right) e^{-S[x]}}{\int \mathscr{D} x e^{-S[x]}} \begin{gathered}
\text { Average } x\left(t_{1}\right) x\left(t_{2}\right) \\
\text { on each path }
\end{gathered}
$$

Excited States

$$
\frac{\langle x(T)| x\left(t_{2}\right) x\left(t_{1}\right)|x(0)\rangle}{\langle x(T) \mid x(0)\rangle}=\frac{\int \mathscr{D} x x\left(t_{2}\right) x\left(t_{1}\right) e^{-S[x]}}{\int \mathscr{D} x e^{-S[x]}} \begin{gathered}
\text { Average } x\left(t_{1}\right) x\left(t_{2}\right) \\
\text { on each path }
\end{gathered}
$$

Plug a complete set of Eigenstates in as before:

$$
\left.=\left|\left\langle E_{0}\right| x\right| E_{1}\right\rangle\left.\right|^{2} e^{-\left(E_{1}-E_{0}\right)\left(t_{2}-t_{1}\right)}, t_{2}-t_{1} \rightarrow \infty
$$

Excited States

Average $x\left(t_{1}\right) x\left(t_{2}\right)$ on each path

$$
\frac{\langle x(T)| x\left(t_{2}\right) x\left(t_{1}\right)|x(0)\rangle}{\langle x(T) \mid x(0)\rangle}=\frac{\int \mathscr{D} x x\left(t_{2}\right) x\left(t_{1}\right) e^{-S[x]}}{\int \mathscr{D} x e^{-S[x]}}
$$

Average over all paths generated
Plug a complete set of Eigenstates in as before:

$$
\begin{aligned}
& \left.\quad=\left|\left\langle E_{0}\right| x\right| E_{1}\right\rangle\left.\right|^{2} e^{-\left(E_{1}-E_{0}\right)\left(t_{2}-t_{1}\right)}, t_{2}-t_{1} \rightarrow \infty \\
& \text { Matrix Element }
\end{aligned}
$$

Excited States

Average $x\left(t_{1}\right) x\left(t_{2}\right)$ on each path

$$
\frac{\langle x(T)| x\left(t_{2}\right) x\left(t_{1}\right)|x(0)\rangle}{\langle x(T) \mid x(0)\rangle}=\frac{\int \mathscr{D} x x\left(t_{2}\right) x\left(t_{1}\right) e^{-S[x]}}{\int \mathscr{D} x e^{-S[x]}}
$$

Average over all paths generated
Plug a complete set of Eigenstates in as before:

$$
\left.=\left|\left\langle E_{0}\right| x\right| E_{1}\right\rangle\left.\right|^{2} e^{-\left(E_{1}-E_{0}\right)\left(t_{2}-t_{1}\right)}, t_{2}-t_{1} \rightarrow \infty
$$

Matrix Element

[^0]
Calculating the Path Integral Numerically

Discretise Time

Divide up the line from $t_{i} \rightarrow t_{f}$ to a set of points

Calculating the Path Integral Numerically

Discretise Time

Divide up the line from $t_{i} \rightarrow t_{f}$ to a set of points

$$
\int \mathscr{D} x(t)=\int d x_{1} d x_{2} \ldots d x_{n}
$$

Calculating the Path Integral Numerically

Discretise Time

Divide up the line from $t_{i} \rightarrow t_{f}$ to a set of points

$$
\int \mathscr{D} x(t)=\int d x_{1} d x_{2} \ldots d x_{n}^{\text {Value of } x \text { at } t_{n}}
$$

Calculating the Path Integral Numerically

Discretise Time

Divide up the line from $t_{i} \rightarrow t_{f}$ to a set of points

$$
\int \mathscr{D} x(t)=\int d x_{1} d x_{2} \ldots d x_{n}^{\text {Value of } x \text { at } t_{n}}
$$

Integrate over all the possible values of x for each x_{j}
n-dimensional integral

Calculating the Path Integral Numerically

Discretising the Action

Call $t_{j+1}-t_{j}=a$, the lattice spacing

$$
\int_{t_{j}}^{t_{j+1}} d t L \approx a\left[\frac{m}{2}\left(\frac{x_{j+1}-x_{j}}{a}\right)^{2}-\frac{1}{2}\left(V\left(x_{j+1}\right)+V\left(x_{j}\right)\right)\right]
$$

Calculating the Path Integral Numerically

Discretising the Action

Call $t_{j+1}-t_{j}=a$, the lattice spacing

$$
\int_{t_{j}}^{t_{j+1}} \quad \begin{aligned}
& \\
& \\
& \hline
\end{aligned} \mathrm{L}\left[\frac{m}{2}\left(\frac{x_{j+1}-x_{j}}{a}\right)^{2}-\frac{1}{2}\left(V\left(x_{j+1}\right)+V\left(x_{j}\right)\right)\right]
$$

Calculating the Path Integral Numerically

Discretising the Action

Call $t_{j+1}-t_{j}=a$, the lattice spacing

$$
\begin{gathered}
\int_{t_{j}}^{t_{j+1}} d t L \approx a\left[\frac{m}{2}\left(\frac{x_{j+1}-x_{j}}{a}\right)^{2}-\frac{1}{2}\left(V\left(x_{j+1}\right)+V\left(x_{j}\right)\right)\right] \\
\dot{x}(t)^{2} \text { between } t_{j+1} \text { and } t_{j} \\
\text { Euler Method }
\end{gathered}
$$

Calculating the Path Integral Numerically

Discretising the Action

Call $t_{j+1}-t_{j}=a$, the lattice spacing

$$
\begin{gathered}
\int_{t_{j}}^{t_{j+1}} d t L \approx a\left[\frac{m}{2}\left(\frac{x_{j+1}-x_{j}}{a}\right)^{2}-\frac{1}{2}\left(V\left(x_{j+1}\right)+V\left(x_{j}\right)\right)\right] \\
\dot{x}(t)^{2} \text { between } t_{j+1} \text { and } t_{j} \\
\text { Euler Method }
\end{gathered}
$$

Moving to QCD
 The Path Integral in QCD

Gluon Fields

Weighted by the exponential of the QCD action

Moving to QCD

Build a Lattice

Moving to QCD

Impose Periodic Boundary Conditions

4D Doughnut?
 Rendering error: Try installing additional dimensions via: sudo apt-get xtra-dims

Finishing Up

- Path Integrals for Eigenstates, and useful physics
- Calculating excited states (particles)
- Discretisation
- Make-up of the lattice
- There are so very many cool things in this field
- Big thanks to Christine Davies - Physicist in Lattice QCD

More on the Lattice

Local Gauge Invariance of QFTs

$$
\begin{array}{ll}
\mathscr{L}_{Q E D}(x)=-\frac{1}{4} F_{\mu \nu}(x) F^{\mu \nu}(x)+\bar{\psi}(x)(\gamma \cdot D+m) \psi(x) \\
F_{\mu \nu}(x)=\partial_{\mu} A_{\nu}(x)-\partial_{\nu} A_{\mu}(x) \\
D_{\mu}=\partial_{\mu}+i e A_{\mu}(x) & \mathrm{U}(1) \text { rotations: } \Omega(x)=e^{i e \omega(x)}
\end{array}
$$

Photon field 'picks up' the difference of the gauge transformation - at the ends of a 'Link'

More on the Lattice

QCD Lagrangian

$$
\mathscr{L}_{Q C D}(x)=-\frac{1}{4} F_{\mu \nu}^{a}(x) F^{\mu \nu, a}(x)+\bar{\psi}(x)(\gamma \cdot D+m) \psi(x)
$$

More on the Lattice

Local Gauge Invariance of QFTs

$$
\mathscr{L}_{Q E D}(x)=-\frac{1}{4} F_{\mu \nu}(x) F^{\mu \nu}(x)+\bar{\psi}(x)(\gamma \cdot D+m) \psi(x)
$$

$$
F_{\mu \nu}(x)=\partial_{\mu} A_{\nu}(x)-\partial_{\nu} A_{\mu}(x)
$$

$$
D_{\mu}=\partial_{\mu}+i e A_{\mu}(x)
$$

$$
\Omega(x)=e^{i e \omega(x)}
$$

$$
\psi^{(g)}=e^{i e \omega(x)} \psi, \bar{\psi}^{(g)}(x)=e^{-i e \omega())} \bar{\psi}(x)
$$

$$
A_{\mu}^{(g)}=A_{\mu}-\partial_{\mu} \omega(x)
$$

[^0]: Excitation Energy between ground and first excited state

