
COMET: A Search for $\mu - e$ conversion

David Vico Benet

Layout of the COMET experiment [1]

COMET: A Search for $\mu - e$ conversior

March 2024

 Predictions for μ – e conversion are ~ O(10⁻⁵⁴) [2, 3]

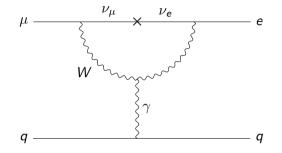


Figure 1: Diagram of $\mu N \rightarrow eN$ [4]

▶ < ⊒ ▶

 Predictions for μ – e conversion are ~ O(10⁻⁵⁴) [2, 3]

• Short distance ν oscillations

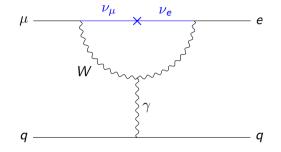


Figure 1: Diagram of $\mu N \rightarrow eN$ [4]

P

▶ < ⊒ ▶

- Predictions for μ e conversion are ~ O(10⁻⁵⁴) [2, 3]
 - Short distance ν oscillations
 - \triangleright ν mass supression

$$\mathcal{B}(\mu o e\gamma) = rac{lpha}{2\pi} \left| \sum_{k} U_{ek} U_{\mu k}^* rac{m_{
u_k}^2}{M_W^2}
ight|^2$$

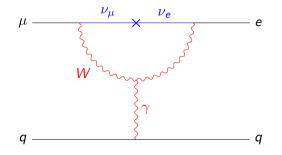


Figure 1: Diagram of $\mu N \rightarrow eN$ [4]

▶ < ⊒ ▶

- Predictions for μ e conversion are ~ O(10⁻⁵⁴) [2, 3]
 - Short distance ν oscillations
 - \blacktriangleright ν mass supression

$$\mathcal{B}(\mu o e\gamma) = rac{lpha}{2\pi} \left| \sum_{k} U_{ek} U^*_{\mu k} rac{m^2_{
u_k}}{M^2_W}
ight|^2$$

• Any signal constitutes new physics with charged lepton flavour violation (cLFV)!

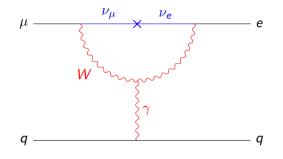


Figure 1: Diagram of $\mu N \rightarrow eN$ [4]

Why $\mu - e$ Conversion?

• Many BSM models give predictions $\sim 10^{-13} - 10^{-15}$ [5]

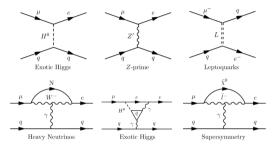


Figure 2: Diagrams of potential New Physics contributions [7]

・ 同 ト ・ ヨ ト ・ ヨ ト

Why $\mu - e$ Conversion?

- Many BSM models give predictions $\sim 10^{-13} 10^{-15}$ [5]
- Sensitive to both photonic and non-photonic contributions unlike $\mu \rightarrow e \gamma$ [6]
- The ratio $\mathcal{B}(\mu N \to eN)/\mathcal{B}(\mu \to e\gamma)$ powerful in distinguishing NP scenarios

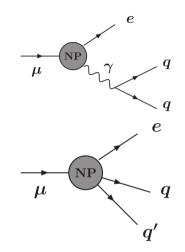


Figure 3: Schematic of potential New Physics contributions [6]

Why $\mu - e$ Conversion?

- Many BSM models give predictions $\sim 10^{-13} 10^{-15}$ [5]
- Sensitive to both photonic and non-photonic contributions unlike $\mu \rightarrow e \gamma ~[6]$
- The ratio $\mathcal{B}(\mu N \to eN)/\mathcal{B}(\mu \to e\gamma)$ powerful in distinguishing NP scenarios
- $\mu \rightarrow e \gamma$ limited by photon resolution $\implies \mu N \rightarrow e N$ natural next step for LFV

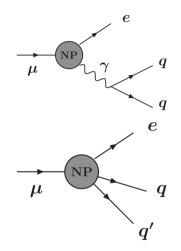
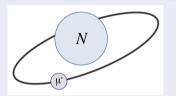
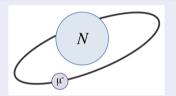



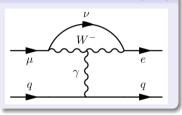
Figure 3: Schematic of potential New Physics contributions [6]

experiments

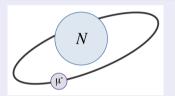
 $\mu N
ightarrow eN$


Capture incident muon forming "muonic atom"

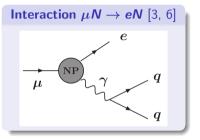
- Need enough time for interaction
- Means incident muons cannot be too energetic


 $\mu N \rightarrow eN$

Capture incident muon forming "muonic atom"


- Need enough time for interaction
- Means incident muons cannot be too energetic

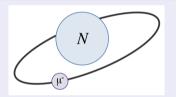
Interaction $\mu N \rightarrow eN$ [3, 6]



 $\mu N \rightarrow eN$

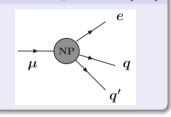
Capture incident muon forming "muonic atom"

- Need enough time for interaction
- Means incident muons cannot be too energetic



March 2024

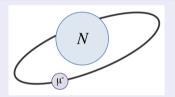
→ Ξ → → Ξ →


 $\mu N \rightarrow eN$

Capture incident muon forming "muonic atom"

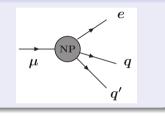
- Need enough time for interaction
- Means incident muons cannot be too energetic

Interaction $\mu N \rightarrow eN$ [3, 6]

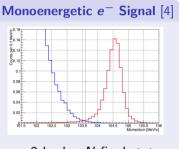


Sensitivity to New Physics

Great probe for [*insert your* favourite cLFV BSM theory]


 $\mu N
ightarrow eN$

Capture incident muon forming "muonic atom"


- Need enough time for interaction
- Means incident muons cannot be too energetic

Interaction $\mu N \rightarrow eN$ [3, 6]

Sensitivity to New Physics

Great probe for [*insert your* favourite cLFV BSM theory]

2-body eN final state

 \Rightarrow Defined e^- energy

March 2024

< 回 > < 回 > < 回 >

- Experiment at J-PARC, Japan
- COherent Muon to Electron Transition (COMET)

Figure 4: COMET - wait no

- Experiment at J-PARC, Japan
- COherent Muon to Electron Transition (COMET)
- Structured in phases [3, 6]:
 - ▶ Phase-I $\mathcal{O}(10^{-15})$ sensitivity

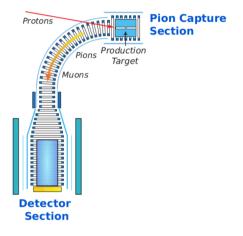


Figure 5: COMET Phase-I Layout [10]

- Experiment at J-PARC, Japan
- COherent Muon to Electron Transition (COMET)
- Structured in phases [3, 6]:
 - Phase-I $\mathcal{O}(10^{-15})$ sensitivity
 - Phase-II $\mathcal{O}(10^{-17})$ sensitivity
- 4 orders of magnitude improvement from current limits [8]

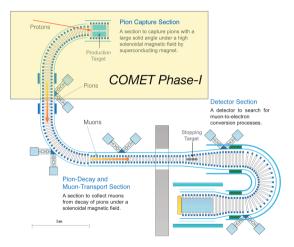


Figure 6: COMET Phase-II Layout [8]

- Experiment at J-PARC, Japan
- COherent Muon to Electron Transition (COMET)
- Structured in phases [3, 6]:
 - Phase-I $\mathcal{O}(10^{-15})$ sensitivity
 - Phase-II $\mathcal{O}(10^{-17})$ sensitivity
- 4 orders of magnitude improvement from current limits [8]
 - Competitive with Mu2e targets similar sensitivity [9]

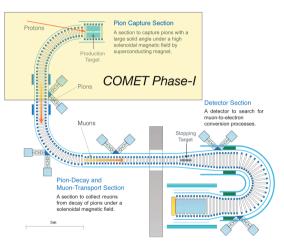
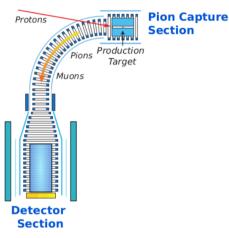
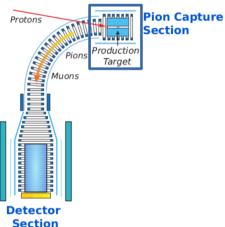



Figure 6: COMET Phase-II Layout [8]

Figure 7: COMET Phase-I Layout [10]

Beam Production [3]


- Proton beam hits target, producing π
- μ beam produced from decay $\pi \to \mu \nu$

Muon Transport System [3]

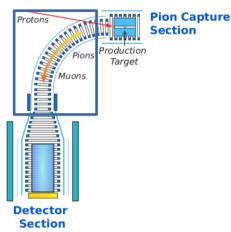
• Curved Solenoid selects muons with a momentum of 40 MeV/c

Muon Stopper & Detector [6]

- Muon stopper serves as nuclear target for μe interaction
- Block μ from hitting detector
- Cylindrical tracker design reduces background from beam and low momentum e⁻

Figure 7: COMET Phase-I Layout [10]

Beam Production [3]


- Proton beam hits target, producing π
- μ beam produced from decay $\pi \to \mu \nu$

Muon Transport System [3]

• Curved Solenoid selects muons with a momentum of 40 MeV/c

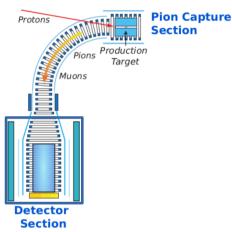
Muon Stopper & Detector [6]

- Muon stopper serves as nuclear target for μe interaction
- Block μ from hitting detector
- Cylindrical tracker design reduces background from beam and low momentum e⁻

Figure 7: COMET Phase-I Layout [10]

Beam Production [3]

- Proton beam hits target, producing π
- μ beam produced from decay $\pi \to \mu \nu$


Muon Transport System [3]

 Curved Solenoid selects muons with a momentum of 40 MeV/c

Muon Stopper & Detector [6]

- Muon stopper serves as nuclear target for μe interaction
- Block μ from hitting detector
- Cylindrical tracker design reduces background from beam and low momentum e⁻

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Figure 7: COMET Phase-I Layout [10]

Beam Production [3]

- Proton beam hits target, producing π
- μ beam produced from decay $\pi \to \mu \nu$

Muon Transport System [3]

• Curved Solenoid selects muons with a momentum of 40 MeV/c

Muon Stopper & Detector [6]

- Muon stopper serves as nuclear target for μe interaction
- Block μ from hitting detector
- Cylindrical tracker design reduces background from beam and low momentum e⁻

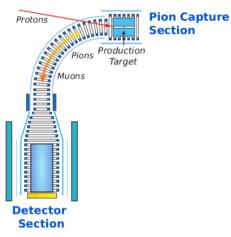
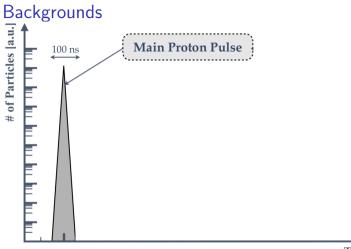


Figure 7: COMET Phase-I Layout [10]

Beam Production [3]


- Proton beam hits target, producing $\boldsymbol{\pi}$
- μ beam produced from decay $\pi \to \mu \nu$

Muon Transport System [3]

 Curved Solenoid selects muons with a momentum of 40 MeV/c

Muon Stopper & Detector [6]

- Muon stopper serves as nuclear target for μe interaction
- Block μ from hitting detector
- Cylindrical tracker design reduces background from beam and low momentum e⁻

Time [µsec]

Figure 8: Time relation of the proton beam pulses, prompt background, stopped muon decay, and a signal event in the data-taking window [6, 9]

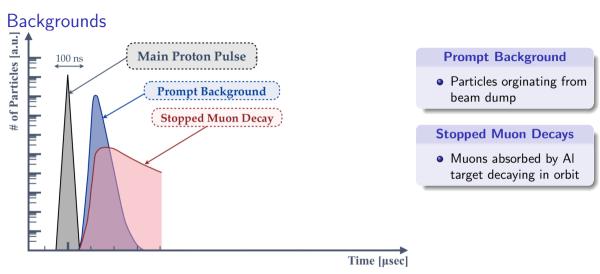


Figure 8: Time relation of the proton beam pulses, prompt background, stopped muon decay, and a signal event in the data-taking window [6, 9]

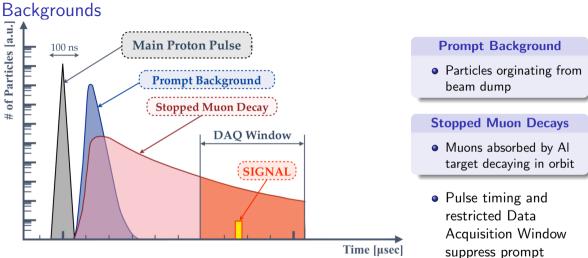
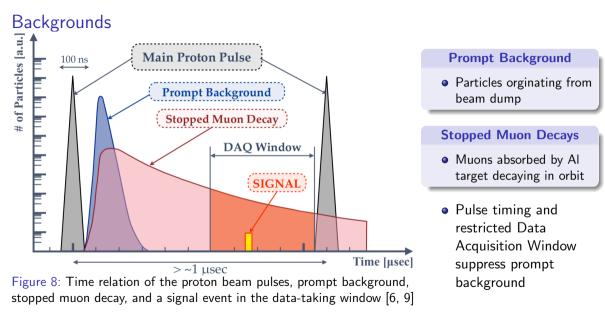



Figure 8: Time relation of the proton beam pulses, prompt background, stopped muon decay, and a signal event in the data-taking window [6, 9] suppress prompt background

March 2024

Decays in Orbit (DIO)

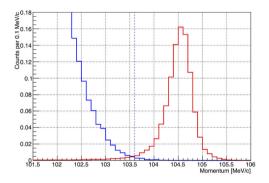
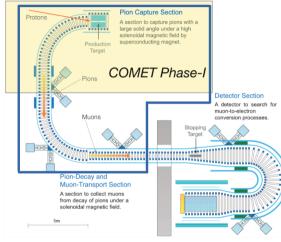



Figure 9: Signal and DIO distributions in e^- energy, for a simulated $10^{-15} \mu - e$ signal [4]

- The captured μ can decay in orbit $\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$
- Tail of the *e*⁻ energy distribution contaminates signal region [4]
- ightarrow For $\mu-e$ below 10^{-17} this would completely hide the signal
 - Conduct precise measurement of DIO energy distribution in Phase-I [6]

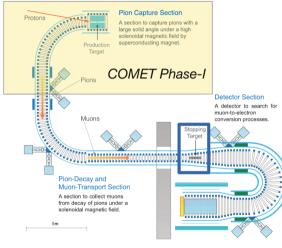
() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Figure 10: COMET Phase-II Layout [8]

Muon Beam [3]

• μ beam using Phase-I curved solenoid

Muon Stopper [3]


• Aluminium target outside detector

Curved Solenoid [3]

- Serves as electron spectrometer
- Select monoenergetic signal and supress DIO background

Detector [3

- Detector outside beam line of sight
- ightarrow Reduced background $\implies \mathcal{O}(10^{-17})$ sensitivity

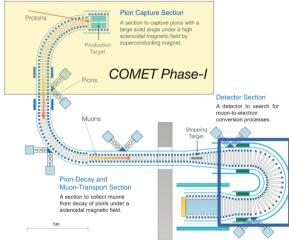
Figure 10: COMET Phase-II Layout [8]

Muon Beam [3]

• μ beam using Phase-I curved solenoid

Muon Stopper [3]

• Aluminium target outside detector


Curved Solenoid [3]

- Serves as electron spectrometer
- Select monoenergetic signal and supress DIO background

Detector [3

- Detector outside beam line of sight
- ightarrow Reduced background $\implies \mathcal{O}(10^{-17})$ sensitivity

< □ > < 酉 > < 壹 > < 壹 > < 壹 > March 2024

Figure 10: COMET Phase-II Layout [8]

Muon Beam [3]

• μ beam using Phase-I curved solenoid

Muon Stopper [3]

• Aluminium target outside detector

Curved Solenoid [3]

- Serves as electron spectrometer
- Select monoenergetic signal and supress DIO background

Detector [3

- Detector outside beam line of sight
- ightarrow Reduced background $\implies \mathcal{O}(10^{-17}$ sensitivity

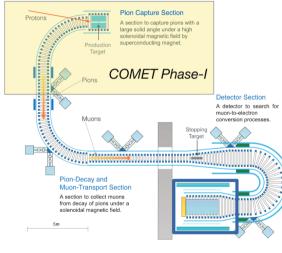


Figure 10: COMET Phase-II Layout [8]

Muon Beam [3]

• μ beam using Phase-I curved solenoid

Muon Stopper [3]

• Aluminium target outside detector

Curved Solenoid [3]

- Serves as electron spectrometer
- Select monoenergetic signal and supress DIO background

Detector [3]

- Detector outside beam line of sight
- ightarrow Reduced background $\implies \mathcal{O}(10^{-17})$ sensitivity

David Vico Benet (University of Oxford)

COMET: A Search for $\mu-e$ conversion

< □ > < ⊡ > < ⊡ > < ⊇ >
 March 2024

9/12

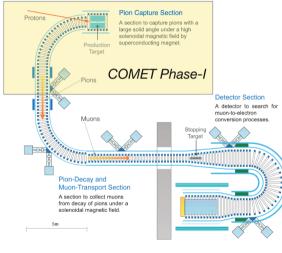


Figure 10: COMET Phase-II Layout [8]

Muon Beam [3]

• μ beam using Phase-I curved solenoid

Muon Stopper [3]

• Aluminium target outside detector

Curved Solenoid [3]

- Serves as electron spectrometer
- Select monoenergetic signal and supress DIO background

Detector [3]

- Detector outside beam line of sight
- ightarrow Reduced background $\implies \mathcal{O}(10^{-17})$ sensitivity

David Vico Benet (University of Oxford)

COMET: A Search for $\mu - e$ conversion

Current Status

- Phase-I currently under construction
 - Curved solenoid and proton beamline constructed [8, 11]

Figure 11: COMET Muon solenoid and beamline [12]

A (10) N (10)

Current Status

- Phase-I currently under construction
 - Curved solenoid and proton beamline constructed [8, 11]
 - Tests of muon transport and beam profile have been performed

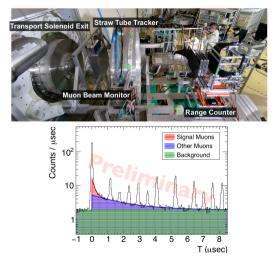


Figure 12: Detector set-up and preliminary results for beam profile tests [12]

Current Status

- Phase-I currently under construction
 - Curved solenoid and proton beamline constructed [8, 11]
 - Tests of muon transport and beam profile have been performed
 - Cylindrical tracker has been constructed and tested [11]

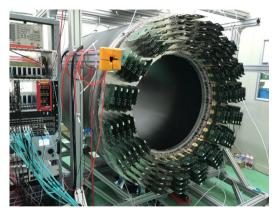


Figure 13: Phase-I cylindrical tracker [11]

March 2024

Conclusions

- COMET μe experiment, increasing sensitivity by 10^4
- Phase-I construction is being finalised
- Data taking is scheduled to begin within the next year! [11]
- Natural upgrade path in form of PRISM [6]
 - Use of new accelerator technology for intense muon beams
 - $\blacktriangleright\,$ Further improvement by factor ~ 100

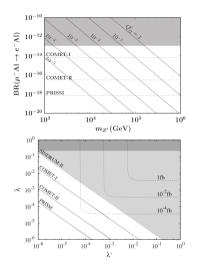


Figure 14: Bounds on BSM models with massive neutral vector bosons (top), and SUSY couplings λ, λ' (bottom) [6]

March 2024

References

- J.-C. Angélique et al., COMET A submission to the 2020 update of the European Strategy for Particle Physics on behalf of the COMET collaboration, 2018. arXiv: 1812.07824 [hep-ex].
- [2] "Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction," La Rivista del Nuovo Cimento, vol. 41, no. 2, pp. 71–174, Jan. 2018, ISSN: 0393697X, 0393697X. DOI: 10.1393/ncr/i2018-10144-0.
- [3] Y. G. Cui *et al.*, "Conceptual design report for experimental search for lepton flavor violating $\mu^- e^-$ conversion at sensitivity of 10^{-16} with a slow-extracted bunched proton beam (COMET),", Jun. 2009.
- M. Lee, "COMET Muon Conversion Experiment in J-PARC," Frontiers in Physics, vol. 6, 2018, ISSN: 2296-424X. DOI: 10.3389/fphy.2018.00133.
- [5] A. Kurup, "Comet/prism and clfv," PPAP Community Meeting 2014, Jul. 2014. [Online]. Available: https://conference.ippp.dur.ac.uk/event/392/contributions/2044/.
- [6] COMET Collaboration, "COMET Phase-I technical design report," Progress of Theoretical and Experimental Physics, vol. 2020, no. 3, Mar. 2020, ISSN: 2050-3911. DOI: 10.1093/ptep/ptz125. [Online]. Available: http://dx.doi.org/10.1093/ptep/ptz125.
- Y. Uchida, "Status of the comet experiment," Workshop on "Flavour changing and conserving processes" 2019 (FCCP2019), Aug. 2019. [Online]. Available: https://agenda.infn.it/event/17947/contributions/98702/.
- [8] Y. Fujii, A search for a muon to electron conversion in COMET, 2023. arXiv: 2308.14275 [hep-ex].
- M. Moritsu, "Search for Muon-to-Electron Conversion with the COMET Experiment," Universe, vol. 8, no. 4, p. 196, Mar. 2022, ISSN: 2218-1997. DOI: 10.3390/universe8040196.
- [10] P. Litchfield, "COMET Phase-I," PoS, vol. NUFACT2014, p. 109, 2015. DOI: 10.22323/1.226.0109.

David Vico Benet (University of Oxford)