Long-lived particles at CLIC

Erica Brondolin (CERN), Emilia Leogrande (CERN), Ulrike Schnoor (CERN) on behalf of the CLICdp Collaboration

Searching for long-lived particles at the LHC:
5th Workshop of the LHC LLP Community
28 May 2019
Introduction

- signatures of new physics may be very diverse
- detectors at future colliders should be able to assess the broadest possible spectrum
Introduction

- signatures of new physics may be very diverse
- detectors at future colliders should be able to assess the broadest possible spectrum

- **CLIC** (Compact Linear Collider): promising to probe long-lived particles
 - 3 centre-of-mass energy stages: 380 GeV, 1.5 TeV, 3 TeV
 - clean collision environment
 - although some beam-induced background present (e.g. $\gamma\gamma \rightarrow$ hadrons)
 - no trigger
Outline

- Two long-lived particle studies performed in the framework of CLIC

1. **Degenerate Higgsino Dark Matter** analysis

 => *disappearing tracks*

 - generator level (CLICdet acceptance) \([CERN-2018-009-M, Sec 5.2]\)
 - full simulation study with CLICdet [new]

2. **Hidden valley searches in Higgs boson decays**

 => *displaced multitrack vertices*

 - full simulation study with CLIC_ILD \([CERN-2018-009-M, Sec 8.1]\)

Both searches need full simulation studies to assess the impact of beam-induced background

- **iLCSoft** framework to perform simulation, reconstruction and analysis
Degenerate Higgsino DM at CLIC

- Higgsino as WIMP dark mat
- dark matter relic abundance => thermal higgsino DM mass ~ O(TeV)
 - @ CLIC 3 TeV: E = 1.5 TeV, m ~ 1.05 TeV => $p^2 = E^2 - m^2$ => $p = 1.07$ TeV
- higgsino multiplet as SU(2)-doublet Dirac fermion (small mass splitting between charged and neutral components) => chargino travels ~ O(cm) before decaying into neutralino and soft pion
 - masses of chargino and neutralino very similar => pion too soft to be detected

=> chargino very straight and short track
a.k.a. ‘stub’ track
Degenerate Higgsino DM at CLIC

- Higgsino as WIMP dark matter
- dark matter relic abundance \Rightarrow thermal higgsino DM mass $\sim O$(TeV)
 - @ CLIC 3 TeV: $E = 1.5$ TeV, $m \sim 1.05$ TeV $\Rightarrow p^2 = E^2 - m^2 \Rightarrow p = 1.07$ TeV
- higgsino multiplet as SU(2)-doublet Dirac fermion (small mass splitting between charged and neutral components) \Rightarrow chargino travels $\sim O(cm)$ before decaying into neutralino and soft pion
- masses of chargino and neutralino very similar \Rightarrow pion too soft to be detected

\Rightarrow chargino very straight and short track a.k.a. ‘stub’ track

- CLIC (Compact Linear Collider) @ 3 TeV: promising to probe signature from thermal higgsino DM
Chargino at CLICdet

- CLICdet acceptance and tracking algorithm determine the capabilities of reconstructing tracks with $O(\text{cm})$ length

<table>
<thead>
<tr>
<th>Barrel Radii [cm]</th>
<th>Endcap Z [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>1 - 6</td>
</tr>
<tr>
<td>3.1 - 3.3</td>
<td>3.5 - 13.0</td>
</tr>
<tr>
<td>3 - 4</td>
<td></td>
</tr>
<tr>
<td>4.4 - 4.6</td>
<td></td>
</tr>
<tr>
<td>5 - 6</td>
<td></td>
</tr>
<tr>
<td>5.8 - 6.0</td>
<td></td>
</tr>
</tbody>
</table>

(0,0) 6 cm 116 mm 130
Chargino at CLICdet

- **CLICdet** acceptance and tracking algorithm determine the capabilities of reconstructing tracks with $O(\text{cm})$ length

<table>
<thead>
<tr>
<th>barrel</th>
<th>radii [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>3.1 - 3.3</td>
</tr>
<tr>
<td>3 - 4</td>
<td>4.4 - 4.6</td>
</tr>
<tr>
<td>5 - 6</td>
<td>5.8 - 6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>endcap</th>
<th>z [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>3.5 - 13.0</td>
</tr>
</tbody>
</table>

- Minimum distance d_{min} the chargino must travel to be reconstructable:
 - given minimum number of hits = 4 for tracking algorithm
 - given the geometric acceptance

\[
d_{\text{min}}(\theta) = \begin{cases}
\frac{4.4 \text{ cm}}{\sin \theta} & 19^\circ < \theta < 90^\circ \\
\frac{22 \text{ cm}}{\cos \theta} & 13^\circ < \theta < 19^\circ \\
\frac{29 \text{ cm}}{\cos \theta} & 8^\circ < \theta < 13^\circ
\end{cases}
\]
Charged stub - generator level

- Methods to count expected number of events with at least one (or two) identifiable stub tracks:
 - 100% efficiency assumed
 - background not included
Charged stub - generator level

- Methods to count expected number of events with at least one (or two) identifiable stub tracks:
 - 100% efficiency assumed
 - background not included

- 95% exclusion reach by requiring $N_{\text{evts}} \geq 3$ with zero background
 - stub only and stub + ISR photon
 - different cuts on photon energy
 - 50, 100, 200 GeV

N. Craig and S. Alipour-Fard
Charged stub - generator level

- Methods to count expected number of events with at least one (or two) identifiable stub tracks:
 - 100% efficiency assumed
 - background not included

- 95% exclusion reach by requiring $N_{\text{evts}} \geq 3$ with zero background
 - stub only and stub + ISR photon
 - different cuts on photon energy
 - 50, 100, 200 GeV

All analyses cover large range of masses

- most optimistic strategies up to thermal dark matter target $m_X \sim 1.1$ TeV
- Results very promising, but need to be confirmed by full simulation and reconstruction

N. Craig and S. Alipour-Fard

[Graph showing 95% Exclusion Reach vs. m_X (GeV)]
Charged stub - full simulation study

1. artificial short track sample

- No chargino sample was available at the time of this preliminary study
 => CLICdet reduced to the vertex detector only (workaround to produce artificially short tracks, i.e. ~ 6 hits on track)

 - [particle type] muons
 - [momentum] p = 1.0 TeV
 - [angular distribution] cos(theta)
Charged stub - full simulation study

1. artificial short track sample

- No chargino sample was available at the time of this preliminary study
 => CLICdet reduced to the vertex detector only (workaround to produce artificially short tracks, i.e. ~ 6 hits on track)

- [particle type] muons
- [momentum] p = 1.0 TeV
- [angular distribution] cos(\theta)

CLICdp work in progress

Flag for reconstructed

MonteCarlo tracks

Number of hits on track

- Efficiency larger than 90%
- Reconstructed tracks have correct number of hits in most of the cases
Charged stub - full simulation study

1. artificial short track sample

\[\frac{(p_T,\text{rec} - p_T,\text{true})}{p_T,\text{true}} \]

- CLICdp work in progress
- Entries: 9325
- Mean: -0.8163
- Std Dev: 0.2824

\[\text{reconstructed } p_T \text{ does not match the simulated one} \]
Charged stub - full simulation study

1. artificial short track sample

- In the presented study:
 - [length (d)] given that the IP is not a measurement* (i.e. a hit on the track), the track length has to be calculated as the difference between the outermost and innermost hit radii
 - CLIC beam spot smaller than LHC (@ 3 TeV: $\sigma_x = 40$ nm, $\sigma_y = 1$ nm)
 => this information can be used in a future refined study
 - [sagitta (s)] The smallest measurable sagitta is approximately equal to the single point resolution (divided by $\sqrt{2}$).

\[p_T = 0.3B \left(\frac{d}{2} \right)^2 + \frac{s^2}{2s} \]

* CLIC beam spot smaller than LHC (@ 3 TeV: $\sigma_x = 40$ nm, $\sigma_y = 1$ nm)

reconstructed p_T does not match the simulated one

- The sensitivity to the curvature of a particle in a given magnetic field depends on the length of the track (d) and on the sagitta (s)
Charged stub - full simulation study

1. artificial short track sample

In the presented study:

- **[length (d)]** given that the IP is not a measurement* (i.e. a hit on the track), the track length has to be calculated as the difference between the outermost and innermost hit radii

 * CLIC beam spot smaller than LHC (@ 3 TeV: σ_x = 40 nm, σ_y = 1 nm)

- **[sagitta (s)]** The smallest measurable sagitta is approximately equal to the single point resolution (divided by sqrt(2)).

- To be able to reconstruct properly the \(p_T \) of a 1 TeV track in the barrel
 - [single point resolution 3μm] stub length should be at least 12 cm

\[
\left(\frac{p_T,\text{rec} - p_T,\text{true}}{p_T,\text{true}}\right)
\]

\[
\begin{align*}
\text{CLICdp work in progress} & \\
\text{ptRes} & \\
\text{Entries} & 9325 \\
\text{Mean} & 0.8163 \\
\text{Std Dev} & 0.2824 \\
\end{align*}
\]

- The sensitivity to the curvature of a particle in a given magnetic field depends on the length of the track (d) and on the sagitta (s)

\[
p_T = 0.3B \frac{(d/2)^2 + s^2}{2s}
\]
Charged stub - full simulation study

2. chargino samples $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \pi^+ \tilde{\chi}_1^0 \pi^-$

- 10k events produced with WHIZARD(*) => 20k charginos
- chargino decays produced with PYTHIA and GEANT for correct decay vertex assignment (*)
- chargino mass 1050 GeV, neutralino mass 1049.8 GeV
- $c\tau = 20$ mm

(*) more details in back-up
Charged stub - full simulation study

2. chargino samples $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \pi^+ \tilde{\chi}_1^0 \pi^-$

- 10k events produced with WHIZARD(*) => 20k charginos
- chargino decays produced with PYTHIA and GEANT for correct decay vertex assignment (*)
- chargino mass 1050 GeV, neutralino mass 1049.8 GeV
- $c\tau = 20$ mm

Efficiency 100%

reconstructed p_T distribution compatible with preliminary study with artificially short muons

Study currently in progress

(*) more details in back-up
Charged stub - full simulation study
3. chargino samples with $\gamma\gamma \rightarrow$ hadron overlay

![Diagram showing bunch trains]
Charged stub - full simulation study
3. chargino samples with $\gamma\gamma \rightarrow \text{hadron overlay}$

- entire bunch train available for offline reconstruction (no trigger)
- ~ one hard interaction per bunch train, all other bunch crossings background only

Diagram:
- CLIC Beam
- $T = 20[ms]$
- 312 x 500ps
- 156ns
- bunch trains
- t
Charged stub - full simulation study

3. chargino samples with $\gamma \gamma \rightarrow $hadron overlay

- Main source of background in the barrel: beam-induced $\gamma \gamma \rightarrow $hadrons
- Full simulation used to overlay the simulated hits from background to simulated hits from signal
 - time stamp hits from detectors (central detectors \leftrightarrow hard interaction)
 - impose timing cuts \Rightarrow 30 bunch crossings integrated (10 before, 20 after hard interaction)
 - reconstruction window in silicon detectors: 10 ns
 - much better timing resolution for particles reaching the calorimeters

- entire bunch train available for offline reconstruction (no trigger)
- \sim one hard interaction per bunch train, all other bunch crossings background only
Charged stub - full simulation study
3. chargino samples with $\gamma\gamma\rightarrow$hadron overlay

- Main source of background in the barrel: beam-induced $\gamma\gamma\rightarrow$hadrons
- Full simulation used to overlay the simulated hits from background to simulated hits from signal

- entire bunch train available for offline reconstruction (no trigger)
- ~ one hard interaction per bunch train, all other bunch crossings background only

- time stamp hits from detectors (central detectors \leftrightarrow hard interaction)
- impose timing cuts \Rightarrow 30 bunch crossings integrated (10 before, 20 after hard interaction)
- reconstruction window in silicon detectors: 10 ns
- much better timing resolution for particles reaching the calorimeters
Charged stub - full simulation study

3. Charged stub - full simulation study

- Efficiency ~95%
- pT cut to reject beam-induced background

Study currently in progress
Hidden valley searches in Higgs decays

- hidden gauge sector coupling to SM particles at high energies
- models contain new massive long lived particles
- search for these LLP through displaced vertices reconstruction

- dominant production channel: VBF @ CLIC 3 TeV
- dominant decay mode: \(h \rightarrow \pi_v^0\pi_v^0 \rightarrow b\bar{b}b\bar{b} \)
- search for these LLP through displaced vertices reconstruction

- Observed 95% CL cross-section upper limits on the \(\sigma(H) \times \text{BR}(H\rightarrow\pi_v^0\pi_v^0) \) for three different \(\pi_v^0 \) masses as a function of \(\pi_v^0 \) lifetime

 - results from full simulation for CLIC_ILD
 - 100% branching fraction of decay into b quarks

- this analysis has been recast for heavy Higgs boson search (neutral naturalness theories)

\[\frac{\sigma}{[\text{pb}]} \]

\[\times \frac{\text{BR}(H\rightarrow\pi_v^0\pi_v^0)}{[\text{ps}]} \]

\[\sigma(H) \times \text{BR}(H\rightarrow\pi_v^0\pi_v^0) \]

\[\text{Lifetime [ps]} \]

\[\text{CLICdp} \]

\[m_{\chi^0} = 25 \text{ GeV/c}^2 \]

\[m_{\chi^0} = 35 \text{ GeV/c}^2 \]

\[m_{\chi^0} = 50 \text{ GeV/c}^2 \]

\[\text{M. Kucharczyk and T. Woiton} \]

https://cds.cern.ch/record/2625054/
Conclusions

- **Long-lived particles** occur in many New Physics models
- **CLIC** is **well suited** to investigate signatures from long-lived particles
 - e+e- => clean environment
 - high energy => probe high mass states
 - linear collider => no trigger
Conclusions

- **Long-lived particles** occur in many New Physics models
- **CLIC is well suited** to investigate signatures from long-lived particles
 - e+e- => clean environment
 - high energy => probe high mass states
 - linear collider => no trigger

- Two analyses performed in CLIC, which underline the importance of **full simulation**:
 - **Higgsino DM**: chargino leaves short straight track (stub) in the vertex detector
 - study at the reconstruction level (both with artificially short muons and realistic chargino sample) shows **very good efficiency** but biased p_T reconstruction
 - nevertheless: **reconstructed p_T still valuable to reject most of the beam-induced background** already from presented preliminary results
 - **background rejection to be further studied and understood**
 - **scan in chargino masses to be performed**
 - **further investigation required with additional photon**
 - **possibility to profit from dE/dx from silicon layers**

- **Hidden valley in Higgs decays**
 - full simulation study to evaluate the sensitivity to masses and lifetimes
 - recast to heavier Higgs bosons
Conclusions

- **Long-lived particles** occur in many New Physics models
- **CLIC** is **well suited** to investigate signatures from long-lived particles
 - e+e- => clean environment
 - high energy => probe high mass states
 - linear collider => no trigger

- Two analyses performed in CLIC, which underline the importance of **full simulation**:
 - **Higgsino DM**: chargino leaves short straight track (stub) in the vertex detector
 - study at the reconstruction level (both with artificially short muons and realistic chargino sample) shows **very good efficiency but biased p_T reconstruction**
 - nevertheless: reconstructed p_T still valuable to reject most of the beam-induced background already from presented preliminary results
 - background rejection to be further studied and understood
 - scan in chargino masses to be performed
 - further investigation required with additional photon
 - possibility to profit from dE/dx from silicon layers
 - **Hidden valley in Higgs decays**
 - full simulation study to evaluate the sensitivity to masses and lifetimes
 - recast to heavier Higgs bosons

- Other interesting opportunities exist at CLIC (e.g. vertices in the imaging calorimeters)
 - dedicated studies required
Conclusions

- **Long-lived particles** occur in many New Physics models
- **CLIC is well suited** to investigate signatures from long-lived particles
 - e+e- => clean environment
 - high energy => probe high mass states
 - linear collider => no trigger

- Two analyses performed in CLIC, which underline the importance of **full simulation**:
 - **Higgsino DM**: chargino leaves short straight track (stub) in the vertex detector
 - study at the reconstruction level (both with artificially short muons and realistic chargino sample) shows very good efficiency but biased p_T reconstruction
 - nevertheless: reconstructed p_T still valuable to reject most of the beam-induced background already from presented preliminary results
 - background rejection to be further studied and understood
 - scan in chargino masses to be performed
 - further investigation required with additional photon
 - possibility to profit from dE/dx from silicon layers
 - **Hidden valley in Higgs decays**
 - full simulation study to evaluate the sensitivity to masses and lifetimes
 - recast to heavier Higgs bosons

- Other interesting opportunities exist at CLIC (e.g. vertices in the imaging calorimeters)
 - dedicated studies required

Idea/discussions with LLP community welcome!
Extra slides
Charged stub - generator level

- Two methods to count expected number of events with at least one (or two) identifiable stub tracks:
 - for both: no efficiency factor applied, no background included

- a) purely analytical method based on survival probability

\[
P_s(d_{\text{min}}) = e^{-m \chi d_{\text{min}}} \Gamma / |\vec{P}_x| \]

- b) Monte Carlo (MadGraph 5)
 - random decay length from lifetime distribution

\[
\Gamma(\chi^{\pm} \to \chi^0 \pi^{\pm}) = \frac{G_F^2}{\pi} \cos^2 \theta_c f_\pi^2 \delta m^3 \sqrt{1 - \frac{m_{\pi}^2}{\delta m^2}}
\]
Charged stub - generator level

- Two methods to count expected number of events with at least one (or two) identifiable stub tracks:
 - for both: no efficiency factor applied, no background included
 - a) purely analytical method based on survival probability
 \[P_s(d_{\text{min}}) = e^{-m_X d_{\text{min}} \Gamma_X / |\vec{p}_X|} \]
 - b) Monte Carlo (MadGraph 5)
 - random decay length from lifetime distribution

\[\Gamma(\chi^\pm \rightarrow \chi^0 \pi^\pm) = \frac{G_F^2}{\pi} \cos^2 \theta_c f^2 \delta m^3 \sqrt{1 - \frac{m_{\pi}^2}{\delta m^2}} \]

- 95% exclusion reach by requiring at least \(N_{\text{evts}} = 3 \) with zero background
 - stub only and stub + ISR photon
 - different cuts on photon energy
 - 50, 100, 200 GeV
Charged stub - generator level

- Two methods to count expected number of events with at least one (or two) identifiable stub tracks:
 - for both: no efficiency factor applied, no background included
 - a) purely analytical method based on survival probability
 \[P_s(d_{\text{min}}) = e^{-m_X d_{\text{min}} \Gamma_X / |\vec{p}_X|} \]
 - b) Monte Carlo (MadGraph 5)
 - random decay length from lifetime distribution

\[\Gamma(\chi^\pm \rightarrow \chi^0 \pi^\pm) = \frac{G_F^2}{\pi} \cos^2 \theta_c f_{\pi}^2 \delta m^3 \sqrt{1 - \frac{m_{\pi}^2}{\delta m^2}} \]

- 95% exclusion reach by requiring at least \(N_{\text{evts}} = 3 \) with zero background
 - stub only and stub + ISR photon
 - different cuts on photon energy
 - 50, 100, 200 GeV

- All analyses cover large range of masses
 - most optimistic strategies up to thermal dark matter target \(m_X \sim 1.1 \) TeV
Charged stub - full simulation study

2. artificial short track sample with $\gamma\gamma \rightarrow \text{hadron overlay}$

- 100 physics events: “short” muons with $p = 1$ TeV, distribution flat in $\cos \theta$

CLICdp work in progress

<table>
<thead>
<tr>
<th>ptReco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Std Dev</td>
</tr>
</tbody>
</table>

reconstructed p_T distribution
Charged stub - full simulation study

2. artificial short track sample with $\gamma\gamma \rightarrow$ hadron overlay

- 100 physics events: "short" muons with $p = 1$ TeV, distribution flat in $\cos \theta$

In spite of the limit on the p_T sensitivity, the signal sample is well separated from the reconstructed tracks from background particles

✓ p_T cut can be used to reject most of the background

NB: with the artificially short muons, most of the tracks have 6 hits

- real stub signal may be characterized by fewer hits on tracks \rightarrow background and signal distributions may be less separated
- normalization to be investigated
- background from artificially short tracks with $n=6$ also to be estimated
Charged stub - generator level

- Purely analytical method based on survival probability
- no efficiency factor applied
- no background included

\[P_s(d_{\text{min}}) = e^{-m_X d_{\text{min}} \Gamma_X / |\vec{p}_X|} \]

\[N_{\text{evts}}^{1\text{-stub}} = L_{\text{int}} \times \int_{-1}^{1} \frac{d\sigma(e^+e^- \rightarrow \chi^+\chi^-)}{d\cos \theta} \left[2P_s(d_{\text{min}}) - P_s(d_{\text{min}})^2 \right] d\cos \theta \]

\[N_{\text{evts}}^{2\text{-stub}} = L_{\text{int}} \times \int_{-1}^{1} \frac{d\sigma(e^+e^- \rightarrow \chi^+\chi^-)}{d\cos \theta} P_s(d_{\text{min}})^2 d\cos \theta. \]

- Monte Carlo validation (MadGraph 5)
- 5x10^4 events at each m_X interval
 - 100-180 GeV @CLIC 380 GeV
 - 100-800 @CLIC 1.5 TeV
 - 100-1600 GeV @CLIC 3 TeV
- random decay length from lifetime distribution
- counted if d > d_{\text{min}}
Charged stub - generator level

- Purely analytical method based on survival probability
 \[P_s(d_{\text{min}}) = e^{-m_X d_{\text{min}} \Gamma_X / |\vec{p}_X|} \]

- no efficiency factor applied
- no background included

- Monte Carlo validation (MadGraph 5)
 - 5x10^4 events at each \(m_X \) interval
 - 100-180GeV @CLIC 380 GeV
 - 100-800 @CLIC 1.5 TeV
 - 100-1600GeV @CLIC 3 TeV
 - random decay length from lifetime distribution
 - counted if \(d > d_{\text{min}} \)

- charged stub only

- charged stub + photon
Charged stub - reconstruction level

1. artificial short track sample

- The hard limit on the maximum reconstructed p_T is given by a combination of magnetic field, stub track length and single point resolution.

- For stub tracks of $p = 1$ TeV in the barrel ($\theta = 89$ deg) and length d:
 - From analytical estimate:
 - [max hits = 6] $d = r_{\text{max}} - r_{\text{min}} = 2.9$ cm $\Rightarrow p_T \sim 60$ GeV/c
 - [min hits = 4] $d = r_{\text{max}} - r_{\text{min}} = 1.5$ cm $\Rightarrow p_T \sim 16$ GeV/c
 - From analytical estimate and IP included as innermost hit on track:
 - [max hits = 6] $d = 6.0$ cm $\Rightarrow p_T \sim 254$ GeV/c
 - [min hits = 4] $d = 4.6$ cm $\Rightarrow p_T \sim 150$ GeV/c
 - From full simulation results [# hits = max hits = 6]:
 - [single point resolution 3μm (default)] mode of the reco p_T distribution ~ 35 GeV/c
 - [single point resolution 1μm] mode ~ 110 GeV/c

\[p_T = 0.3B \frac{\left(\frac{d}{2}\right)^2 + s^2}{2s} \]

- To be able to reconstruct properly the p_T of a 1 TeV track in the barrel:
 - [single point resolution 3μm] stub length should be at least 12 cm
 - [single point resolution 1μm] stub length should be at least 7 cm
Monte Carlo generation for long-lived chargino pair production

- Process: chargino pair production where the charginos decay to a neutralino and a pion:
 \[e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \pi^+ \tilde{\chi}_1^0 \pi^- \]

- Chargino mass \(m_{\tilde{\chi}_1^\pm} = 1050 \text{ GeV (PDGID = 1000024)} \),
 neutralino mass \(m_{\tilde{\chi}_1^0} = 1049.8 \text{ GeV (PDGID = 1000022)} \)

- Chargino lifetime \(c\tau = 60 \text{ mm (to be varied)} \)

- Whizard-2.7.0 used for generation of the hard process, Pythia6 for the parton shower
 - Full chain in Whizard up to neutralino and pion final state, with Pythia used for parton shower,
 OR:
 - Pythia can also do the chargino decay, passing the relevant parameters to the Whizard-Pythia interface:
 $\text{ps_PYTHIA_PYGIVE} = \"IMSS(1)=1;PMAS(312,1)=1050.;PMAS(312,4)=60.;MDCY(312,2)=2601;MDCY(312,3)=1;PMAS(310,1)=1049.8;MDCY(310,1)=0;KFDP(2601,1)=1000022;KFDP(2601,2)=211;KFDP(2601,3)=0;KFDP(2601,4)=0;KFDP(2601,5)=0;BRAT(2601)=1.0\"$

- Event record from Whizard does not contain the displacement (authors contacted)

- Workaround: Use Geant4 to obtain the displaced decay by setting the chargino lifetime in the Geant4 particle table\(^1\)
 - In ddsim, this is done via the option --physics.pdgfile particle.tbl

\(^1\)https://github.com/AIDASoft/DD4hep/blob/master/DDG4/examples/particle.tbl
Hidden valley searches in Higgs decays

- this analysis has been recast for heavy Higgs boson search (neutral naturalness theories)

- $m_H = 125 \text{ GeV}$

- $m_H = 600 \text{ GeV}$

- $m_H = 1000 \text{ GeV}$