Tracking techniques for long-lived higgsinos with the ATLAS detector

Matthew Gignac

Searching for long-lived particles at the LHC: Fifth workshop of the LHC LLP Community
May 27th – 29th, 2019
Introduction

- Long-lived higgsinos are a promising signal for BSM physics that could be naturally realized at the electroweak scale.
- The mean lifetime of the charged higgsino state:

\[c\tau[\text{mm}] \sim 7 \times \left(\frac{\Delta m(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0)}{340 \text{ MeV}} \right)^3 \sqrt{1 - \frac{m_{\pi^\pm}^2}{\Delta m(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0)^2}} \]

Tracks lengths of ~7 to 14 mm → extremely difficult to reconstruct!

\[m(\tilde{\chi}_1^0) \sim \tau \]

\[\text{Observed 95\% CL limit (±1\sigma_{\text{theory}})} \]
\[\tilde{\chi}_1^0 \text{ excluded} \]
\[\text{Expected 95\% CL limit (±1\sigma_{\text{exp}})} \]
\[\text{Theoretical line for pure higgsino} \]
\[\text{LEP2} \tilde{\chi}_1^0 \text{ excluded} \]
Long-lived higgsinos are a promising signal for BSM physics that could be naturally realized at the electroweak scale.

The mean lifetime of the charged higgsino state:

\[c\tau[\text{mm}] \sim 7 \times \left(\frac{\Delta m(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0)}{340 \text{ MeV}} \right)^3 \left(1 - \frac{m_{\pi^\pm}^2}{\Delta m(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0)^2} \right)^{-1} \]

Tracks lengths of \(\sim 7 \) to 14 mm \(\rightarrow \) extremely difficult to reconstruct!

Want to improve sensitivity to these models these by extending “pixel tracklets” to the shortest possible length.

→ “Conventional pixel tracklets” use at least four pixel hits.

→ Attempting to extend usage down to three pixel hits \(\rightarrow \) rates from random combinations of pixel hits increase significantly, so need techniques to reduce backgrounds.
Disappearing track plus a soft-track signature

Long-lived charged state from compressed mass spectrum

\[\Delta m \left(\tilde{\chi}^\pm_1, \tilde{\chi}^0_1, \tilde{\chi}^0_{1,2} \right) \sim 300 \text{ MeV} \]

Extremely low momentum

\[p_T \sim 300 \text{ MeV} \]
ATLAS detector
ATLAS detector
Tracklet Seeding

Tracklets seed from three pixel space points

Seeding requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of space-points</td>
<td>(\geq 3)</td>
</tr>
<tr>
<td>Max radius of space-points</td>
<td>(< 150) mm</td>
</tr>
<tr>
<td>Transverse impact parameter (d_0)</td>
<td>(< 10) mm</td>
</tr>
<tr>
<td>Longitudinal impact parameter (z_0)</td>
<td>(< 320) mm</td>
</tr>
<tr>
<td>Minimum transverse momentum (p_T)</td>
<td>(> 5) GeV</td>
</tr>
<tr>
<td>Maximum pseudorapidity (</td>
<td>\eta</td>
</tr>
</tbody>
</table>

May 29, 2019
Matthew Gignac (SCIPP)
Tracklet extension

Track seed from three pixel space point
Spurious SCT clusters

- Single hits from pile-up associated to tracklets trajectory spoil the disappearing track condition (veto on SCT hits)
- Require SCT hits on both axial and stereo layers → significant reduction in fake rate, and improves disappearing track condition by over 40%!
Tracklet reconstruction

- Reconstruction efficiency better than 90% beyond $r \sim 88$ mm

$$\epsilon_{\text{reco}}(\tilde{\chi}_1^\pm) = \frac{\text{number of charginos matched to a reconstructed track}}{\text{number of generated chargino particles}}$$

ATLAS Simulation Preliminary

- $\sqrt{s} = 13$ TeV

Small inefficiency vs pileup!

- Mostly due to SCT hit filter
Tracklet reconstruction

- Reconstruction efficiency better than 90% beyond $r \sim 88$ mm

$$\epsilon_{\text{reco}}(\tilde{\chi}_1^\pm) = \frac{\text{number of charginos matched to a reconstructed track}}{\text{number of generated chargino particles}}$$

Graphs and Figures

- **ATLAS Simulation**
 - Preliminary
 - $\sqrt{s} = 13$ TeV

- **Reconstruction efficiency**
 - $n_{\text{pix}} \geq 3$, $n_{\text{SCT}} = 0$
 - $n_{\text{pix}} \geq 4$, $n_{\text{SCT}} > 0$

- **Chargino decay radius**
 - $0 \, \text{mm}$ to $600 \, \text{mm}$

- **Efficiency vs. Decay radius**
 - Pixel tracklets
 - Standard tracks
 - ATLAS Simulation

- **Fraction of chargino decays**
 - $m_{\tilde{\chi}} = 400$ GeV, $\tau_{\tilde{\chi}} = 0.2$ ns

Significant improvements in overall efficiency and towards shorter track lengths compared to previous ATLAS reconstruction algorithms!!
RoI soft-track seeding

- A Region of Interest (RoI) technique developed to reconstruct soft-track
 - Tracklets define a RoI to search for seeds
 - Dynamically set the origin in each RoI to the last pixel tracklet measurement
 - Apply impact parameter requirements relative to this new origin
 - Perform track finding using SCT hits only
- Reduces execution times by over an order of magnitude: \(~30\) s/evt \(\rightarrow\) \(1-2\) s/evt
Soft-track reconstruction efficiency

- Efficiency evaluated after successful reconstruction of a tracklet with the same criteria used during the soft-track seeding stage.
- Achieve ~50-60% for tracks with $p_T > 300$ MeV.

![Graphs showing efficiency as a function of soft-track p_T and d_0.]
Two-track vertex fit

Two-track vertex fit performed to estimate decay position of the chargino

ISR jet

Low p_T track

"Pixel tracklet"
Vertex efficiency

- Two-track vertex fit performed with pixel-tracklet and soft-track
- Tracking efficiency factored out from vertex efficiency:

$$\epsilon_{vtx}(x) = \frac{N_{\text{truth}}(\text{vertex reconstructed} \mid \text{seed tracks reconstructed})}{N_{\text{truth}}(\text{seed tracks reconstructed})}$$

- Inefficiency due to collinear configurations
- Stable as a function of pileup!
Vertex Position Resolution

- Position resolution studied in signal by taking difference between reconstructed and generated decay position
- Extract resolution with double gaussian model for the “core” and “tails”
- Resolution dominated by the tails

<table>
<thead>
<tr>
<th>r (mm)</th>
<th>σ_{x}^{core} (mm)</th>
<th>σ_{x}^{tail} (mm)</th>
<th>σ_{y}^{core} (mm)</th>
<th>σ_{y}^{tail} (mm)</th>
<th>σ_{z}^{core} (mm)</th>
<th>σ_{z}^{tail} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r < 150$</td>
<td>0.49 ± 0.04 (27%)</td>
<td>2.92 ± 0.10 (73%)</td>
<td>0.49 ± 0.07 (22%)</td>
<td>2.86 ± 0.10 (78%)</td>
<td>0.65 ± 0.08 (18%)</td>
<td>3.69 ± 0.20 (82%)</td>
</tr>
<tr>
<td>$150 < r < 300$</td>
<td>0.52 ± 0.03 (38%)</td>
<td>2.41 ± 0.06 (62%)</td>
<td>0.52 ± 0.03 (33%)</td>
<td>2.36 ± 0.05 (67%)</td>
<td>0.66 ± 0.06 (25%)</td>
<td>3.28 ± 0.13 (75%)</td>
</tr>
</tbody>
</table>

May 29, 2019

Matthew Gignac (SCIPP)
Conclusions

- Techniques for the reconstruction of short pixel tracklets with the ATLAS detector were presented
 - Efficient reconstruction of tracklets with as few as three pixel hits
 - Improved efficiency in high pile-up environment with a dedicated hit filter
 - Targeted the low momentum charged particle from the decay of the chargino
 - Developed two-track vertexing methods to estimate decay position of the chargino with a position resolution O(1) mm

- Inclusion of the soft-track is expected to help significantly reduce the overwhelming fake pixel tracklet background

- Performance of these techniques documented into a PUB note:
 - Performance of tracking and vertexing techniques for a disappearing track plus soft track signature with the ATLAS detector
Additional slides
Impact parameter resolution with respect to the beam spot

- Small differences between 4-pixel and 4-pixel plus SCT hit categories \(\rightarrow \) \(z_0 \) resolution main driven by presence of pixel hits
- Resolution of \(z_0 \) IP depends highly on incident angle \(\rightarrow \) cluster sharing in the forward regions improves the single hit resolution
Pixel tracklet IP resolution

⇒ Transverse d_0 impact parameter resolution

\[\sigma(d_0) \] vs.

\begin{align*}
\text{Chargino } p_T &\text{ [GeV]} \\
\text{Chargino } \eta &\text{ [GeV]} \\
\end{align*}

\(\sqrt{s} = 13 \text{ TeV} \)

\text{ATLAS Simulation}

Preliminary

η_{χ^0}

m_{χ^0}

$n_{\text{pix}} = 3, n_{\text{SCT}} = 0$

$n_{\text{pix}} \geq 4, n_{\text{SCT}} = 0$

$n_{\text{pix}} \geq 4, n_{\text{SCT}} > 0$

May 29, 2019

Matthew Gignac (SCIPP)
Soft-track reconstruction efficiency

\[\epsilon_{\text{reco}}(\text{soft-track}) \]

ATLAS Simulation Preliminary

\[\sqrt{s} = 13 \text{ TeV} \]

Average number of pp interactions

- \(m(\tilde{\chi}_1^\pm) = 95 \text{ GeV} \)
- \(m(\tilde{\chi}_1^\mp) = 200 \text{ GeV} \)
Vertexing efficiency

ATLAS Simulation

Preliminary

$\sqrt{s} = 13$ TeV

- $m(\tilde{\chi}_1^\pm) = 95$ GeV
- $m(\tilde{\chi}_1^\pm) = 200$ GeV

Soft-track production radius [mm]

ξ_{χ}

0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ΔR(Chargino, soft-track)
SV Impact Parameters

- Impact parameter resolution relative to the fitted secondary vertex
- Soft-track only use SCT measurements → degraded performance in pointing resolution further from the SCT detector

Effects of multiple scattering are significant at low p_T

Uncertainties from measured TPs increases for larger extrapolations
SV Impact Parameters

\[\sigma_{SV}(z) \] [mm]

\begin{align*}
&\text{Reconstructed vertex radius [mm]} \\
&\begin{array}{c}
0 & 100 & 150 & 200 & 250 & 300 \\
\end{array}
\end{align*}

\begin{align*}
&\text{ATLAS Simulation} \\
&\text{Preliminary} \\
&\sqrt{s} = 13 \text{ TeV} \\
&\begin{array}{c}
\blackbullet & m(\tilde{\chi}_1^+) = 95 \text{ GeV} \\
& m(\tilde{\chi}_1^\pm) = 200 \text{ GeV} \\
\end{array}
\end{align*}

\begin{align*}
&\text{Soft-track } p_T [\text{GeV}] \\
&\begin{array}{c}
0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 & 1.2 & 1.4 & 1.6 \\
\end{array}
\end{align*}

\begin{align*}
&\text{ATLAS Simulation} \\
&\text{Preliminary} \\
&\sqrt{s} = 13 \text{ TeV} \\
&\begin{array}{c}
\blackbullet & m(\tilde{\chi}_1^+) = 95 \text{ GeV} \\
& m(\tilde{\chi}_1^\pm) = 200 \text{ GeV} \\
\end{array}
\end{align*}
SV Impact Parameters

\[\sigma_{SV}(d_0) [\text{mm}] \]

ATLAS Simulation

Preliminary

\(\sqrt{s} = 13 \text{ TeV} \)

\(m(\tilde{\chi}_1^\pm) = 95 \text{ GeV} \)

\(m(\tilde{\chi}_1^\pm) = 200 \text{ GeV} \)

\[\eta \text{ (Soft-track)} \]

\[z_{SV} \]

\[\text{[mm]} \]