Tracking techniques for long-lived higgsinos with the ATLAS detector

Matthew Gignac

Searching for long-lived particles at the LHC: Fifth workshop of the LHC LLP Community May $27^{th} - 29^{th}$, 2019

Introduction

- ⇒ Long-lived higgsinos are a promising signal for BSM physics that could be naturally realized at the electroweak scale
- \Rightarrow The mean lifetime of the charged higgsino state:

Introduction

- ⇒ Long-lived higgsinos are a promising signal for BSM physics that could be naturally realized at the electroweak scale
- \Rightarrow The mean lifetime of the charged higgsino state:

→ Attempting to extend usage down to three pixel hits → rates from random combinations of pixel hits increase significantly, so need techniques to reduce backgrounds

$$0.02 \quad 100 \quad 120 \quad 140 \quad 160 \quad 180 \quad 200 \\ \text{ATL_PHYS_PUB_2017_019} \quad \mathfrak{m}_{\tilde{\chi}_1^{\pm}}^{\pm} [\text{GeV}] \quad 1 \quad \mathfrak{m}_{\tilde{\chi}_1^{\pm}}^{\pm} [\text{GeV}] \quad \mathfrak{m}_{\tilde{\chi}_1^{\pm}}^{\pm} [$$

Disappearing track plus a soft-track signature

ATLAS detector

ATLAS detector

Matthew Gignac (SCIPP)

Tracklet Seeding

Tracklets seed from three pixel space points

Seeding requirements

Requirement	cut
Number of space-points	==3
Max radius of space-points	< 150 mm
Transverse impact parameter d ₀	<10mm
Longitudinal impact parameter z ₀	<320mm
Minimum transverse momentum $p_{\rm T}$	>5 GeV
Maximum pseudorapidity $ \eta $	<2.2

Tracklet extension

Spurious SCT clusters

\Rightarrow Reconstruction efficiency better than 90% beyond r ~88 mm

 $\epsilon_{\text{reco}}(\tilde{\chi}_1^{\pm}) = \frac{\text{number of charginos matched to a reconstructed track}}{\text{number of generated chargino particles}}$

\Rightarrow Reconstruction efficiency better than 90% beyond r ~88 mm

 $\epsilon_{\text{reco}}(\tilde{\chi}_1^{\pm}) = \frac{\text{number of charginos matched to a reconstructed track}}{\text{number of generated chargino particles}}$

RoI soft-track seeding

- ⇒ Efficiency evaluated after successful reconstruction of a tracklet with the same criteria used during the soft-track seeding stage
- \Rightarrow Achieve ~50-60% for tracks with $p_T > 300 \text{ MeV}$

Two-track vertex fit

Vertex efficiency

- \Rightarrow Two-track vertex fit performed with pixel-tracklet and soft-track
- \Rightarrow Tracking efficiency factored out from vertex efficiency:

 $\epsilon_{\rm vtx}(x) = \frac{N_{\rm truth}(\text{vertex reconstructed} \mid \text{seed tracks reconstructed})}{N_{\rm truth}(\text{seed tracks reconstructed})}$

- ⇒ Position resolution studied in signal by taking difference between reconstructed and generated decay position
- ⇒ Extract resolution with double gaussian model for the "core" and "tails"
- \Rightarrow Resolution dominated by the tails

	r < 150 mm	150 mm < r < 300 mm
$\sigma_x^{\rm core}$	$0.49 \pm 0.04 \text{ mm} (27\%)$	0.52 ± 0.03 mm (38%)
σ_x^{tail}	2.92 ± 0.10 mm (73%)	2.41 ± 0.06 mm (62%)
$\sigma_{\rm v}^{\rm core}$	$0.49 \pm 0.07 \text{ mm} (22\%)$	$0.52 \pm 0.03 \text{ mm} (33\%)$
σ_y^{tail}	2.86 ± 0.10 mm (78%)	$2.36 \pm 0.05 \text{ mm} (67\%)$
$\sigma_z^{\rm core}$	0.65 ± 0.08 mm (18%)	0.66 ± 0.06 mm (25%)
$\sigma_z^{\rm tail}$	3.69± 0.20 mm (82%)	3.28 ± 0.13 mm (75%)

Conclusions

- ⇒ Techniques for the reconstruction of short pixel tracklets with the ATLAS detector were presented
 - Efficient reconstruction of tracklets with as few as three pixel hits
 - Improved efficiency in high pile-up environment with a dedicated hit filter
 - Targeted the low momentum charged particle from the decay of the chargino
 - Developed two-track vertexing methods to estimate decay position of the chargino with a position resolution O(1) mm
- ⇒ Inclusion of the soft-track is expected to help significantly reduce the overwhelming fake pixel tracklet background
- \Rightarrow Performance of these techniques documented into a PUB note:
 - Performance of tracking and vertexing techniques for a disappearing track plus soft track signature with the ATLAS detector
 - <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-011/</u>

Additional slides

Tracklet IP resolution

- \Rightarrow Impact parameter resolution with respect to the beam spot
 - − Small differences between 4-pixel and 4-pixel plus SCT hit categories \rightarrow z_0 resolution main driven by presence of pixel hits
 - − Resolution of z_0 IP depends highly on incident angle → cluster sharing in the forward regions improves the single hit resolution

\Rightarrow Transverse d₀ impact parameter resolution

- \Rightarrow Impact parameter resolution relative to the fitted secondary vertex
- \Rightarrow Soft-track only use SCT measurements \rightarrow degraded performance in pointing resolution further from the SCT detector

