

ATLAS displaced HNL analysis

Philippe Mermod for the ATLAS dHNL analysis team LHCLLP workshop, 29 May 2019

Pioneering signature : lepton + DV (low pT) for the first time at the LHC

production

Few cm displacement

- 2016 data suffice to probe HNLs in mass range 5-10 GeV beyond LEP constraints
- High-impact search

decay

Pioneering signature: lepton + DV (low pT) for the first time at the LHC

Probe coupling 1 order of magnitude below Delphi for $5 < m_N < 10 \text{ GeV}$

Signal MC samples

$$W^{\pm} \to \mu^{\pm} + N \to \mu^{\pm} + \mu^{\mp} \mu^{\pm} \nu_{\mu}$$

$$W^{\pm} \to \mu^{\pm} + N \to \mu^{\pm} + \mu^{\mp} e^{\pm} \nu_e$$

- Pythia generator
- Consider dominant mixing to muon flavour
- Consider only leptonic N decays
 - branching ratio = 0.17 ± 0.01
- Neglect contribution of N decay to μ+τ+ν_τ
- No lepton number violation
 - does not matter in this analysis
- Full simulations with N lifetimes of 1, 10, 100 mm

Large-radius tracking

- Special tracking needed to access large-d0 tracks from DV
- Computer-intensive, can be run only on a limited fraction of the RAW data → "filter" selection
- Mu26 trigger
- Combined muon with p_⊤ > 28 GeV
- Second muon with p_T
 5 GeV either standalone, or, if combined, either large d0 or large Chi² for ID-MS matching

Offline event selection

- Tight prompt muon
- The DV should satisfy :
- Within ID fiducial volume
- Two tracks of opposite charge
- Two tight leptons (either μμ or μe)
- Tracks are not back-toback (cosmic veto)
- Reconstructed vertex mass m_{DV} > 4 GeV

Backgrounds which can produce DVs

- Hadronic interactions with detector material
- Cosmics producing back-to-back displaced muons
- Metastable particle decays – low mass
- Random crossings of pile-up tracks – largely dominant at high mass (> 3 GeV)

Most of these give hadrons, hence the "tight" lepton ID requirements to reduce fakes

Qualitative background studies

- Statistically enhanced sample (whole DRAW, no material veto: x25 enhancement)
- Fit to J/Psi and Psi(2S) gives 0.04 events at m_{DV} > 4 GeV
- No Upsilon candidate found in m_{DV} ~ 10 GeV region

Background estimate: same-charge DV control region

- Assumption: presence of high-mass DV does not depend on sign configuration
- 0 events observed in C → A < 2.3 at 90% c.l.
- 1-lepton DV validation (A',C')

2-lepton DV	$C = \begin{array}{c} 2\mu : \ 0 \\ \mu e : \ 0 \end{array}$	A <u>0</u>	
1-lepton DV	C' μ: 83 e: 28	Α' μ: 89 e: 35	
0-lepton DV	D 169254	B 168037	
	Same-charge DV Opposite-charge DV		

Displaced track reconstruction systematics

- Dominant systematics dedicated study using K0s
- Comparison between data and MC to extract weight factors in bins of p_T and r_{DV}
- Applying weights → max 15% effect in signal efficiency, used as systematic uncertainty

What next in ATLAS?

- Full run-2 dataset repeat search in leptonic (muonic) channel, aim at publication this winter
 - Lepton-seeded vertexing algorithm (no d0 cut) →
 ~30% efficiency increase, but also more backgrounds
- Leptonic electron channel not started yet (lack of manpower)
- Exploring options for probing lower masses (lack of manpower)
- Semi-leptonic channel started

Pythia model for HNL semi-leptonic decays

- Current Pythia version does not provide a way to decay virtual W to hadrons, as most decay codes will turn partons into hadrons before doing phase space
- Communicated with Pythia author Torbjörn Sjöstrand, who proposed small fix in Pythia code (ParticleDecays.cc), introducing decay modes 93 and 94 (94 to be used as it takes virtual W into account in the kinematics)
- Change is implemented in the trunk version, and will appear with the next Pythia release
- In the meantime, produced samples privately

Pythia event generation joboptions

```
## Pvthia8 W->mu+HNL
evgenConfig.description = "W->mu+HNL production with the A14 NNPDF23LO tune"
evgenConfig.keywords = ["electroweak", "W"]
evgenConfig.contact = ["Jyoti Prakash Biswal, jyoti.prakash.biswal@cern.ch"]
include("MC15JobOptions/Pvthia8 A14 NNPDF23L0 EvtGen Common.pv")
from EvgenProdTools.EvgenProdToolsConf import TestHepMC
genSeg += TestHepMC()
TestHepMC.MaxTransVtxDisp = 200000 #in mm
TestHepMC.MaxTransVtxDispLoose = 300000 #in mm
TestHepMC.MaxVtxDisp = 500000 #in mm
genSeq.Pythia8.Commands += ["50:new = N2 N2 2 0 0 10.0 0.0 0.0 0.0 10.0 0 1 0 1 0",
                            "50:isResonance = false",
                            "50:addChannel = 1 0.1994 94 1 -2 -13",# HNL decay in d ubar mu+
                            "50:addChannel = 1 0.1994 94 -1 2 13", # HNL decay in dbar u mu-
                            "50:addChannel = 1 0.0461 94 3 -2 -13",# HNL decay in s ubar mu+
                            "50:addChannel = 1 0.0461 94 -3 2 13", # HNL decay in sbar u mu-
                            "50:addChannel = 1 0.0007 94 5 -2 -13",# HNL decay in b ubar mu+
                            "50:addChannel = 1 0.0007 94 -5 2 13", # HNL decay in bbar u mu-
                            "50:addChannel = 1 0.0461 94 1 -4 -13",# HNL decay in d cbar mu+
                            "50:addChannel = 1 0.0461 94 -1 4 13", # HNL decay in dbar c mu-
                            "50:addChannel = 1 0.19925 94 3 -4 -13",# HNL decay in s cbar mu+
                            "50:addChannel = 1 0.19925 94 -3 4 13", # HNL decay in sbar c mu-
                            "50:addChannel = 1 0.00845 94 5 -4 -13",# HNL decay in b cbar mu+
                            "50:addChannel = 1 0.00845 94 -5 4 13", # HNL decay in bbar c mu-
                            "50:mayDecay = on",
                            "WeakSingleBoson:ffbar2W = on", # create W bosons
                            "24:onMode = off", # switch off all W decays
          "24:addchannel = 1 1. 103 -13 50",# W decay in mu+ N
          "ParticleDecays:limitTau0 = off", # switch off decaying lifetime limits
          "ParticleDecays:tau0Max = 600.0"]
```

 Added decays to all possible quark species, following CKM matrix elements

Semi-leptonic decays – (truth) hadron multiplicities

- Number of hadrons of order 5-10, among which ~60% charged
- Increases with HNL mass as expected

Validation of hadron multiplicities

- Near the non-perturbative regime
- Generate HNL decays via virtual Z, with HNL mass of 15 GeV
- Select window in invariant mass of all hadrons around 10 GeV
- Compare with existing data of e⁺e⁻ annihilation at the same invariant mass
- Need to be careful to include decay products for cτ < 10 cm

Average multiplicities	e⁺e⁻ data (PDG)	our Pythia model
π^{\pm}	6.52 ± 0.11	6.04 ± 0.04
π^{o}	3.2 ± 0.3	3.43 ± 0.03
K [±]	0.95 ± 0.02	1.09 ± 0.02
K ⁰	0.91 ± 0.05	1.01 ± 0.06

 Reasonable agreement

Outlook

