

Bundesministerium für Bildung und Forschung

1) Monday 13:30: Plenary introductory talks from the conveners of the groups

Overview of status quo

- 2) Preparation sessions on Monday
- 3) Parallel working sessions on Tuesday -

4) Working group reports / summary talks on Wednesday at 11:35

Here we are

Topics

- (How) can we improve LLP searches using ML?
- Wide range of non-standard signatures
 - Avoid over optimisation
 - Anomaly finding?
- Goals today
 - Understand available datasets see what is needed
 - Discuss NN architectures and see how they can be mapped to LL problems
 - (If time & interest): ML tutorial

Datasets

- No (simulated) data no machine learning
- Need to understand what
 - ..is available
 - ..can be made available
 - ..should be produced
- Fidelity:
 - Generator- / Delphes / Geant / Data

Long-Lived Particle Datasets for ML **Training**

We are interested in collecting pointers to datasets that may exist that could be used for ML

training. Theorists datasets, datasets internal to experiments, etc. Anything that might be made public (or already is public). We are hoping to built a list of datasets that are publicly accessible tha ML practitioners can use to try out new techniques and algorithms that will end up benefiting all of
us. We are asking for your email address for attribution and so we can get in touch if we have follow-up questions.
* Required
Email address *
Your email
What LLPs does the dataset contain?
Your answer
A reference for the dataset (email, url, etc.)
Your answer

Never submit passwords through Google Forms.

Results

Tracking down Quirks at the Large Hadron Collider

(toy)

Simon Knapen,^{1,2} Hou Keong Lou,^{1,2} Michele Papucci,^{1,2} and Jack Setford³

¹Department of Physics, University of California, Berkeley, California 94720, USA

²Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

³Department of Physics and Astronomy, University of Sussex, England, UK

(Dated: November 15, 2017)

1708.02243

The Optimal Use of Silicon Pixel Charge Information for Particle Identification

Harley Patton¹ and Benjamin Nachman²

1803.08974

A Bottom Line for the LHC Data by Leveraging Pileup as a Zero Bias Sample

Benjamin Nachman*

Lawrence Berkeley National Laboratory

Francesco Rubbo[†]
SLAC National Accelerator Laboratory
(Dated: October 24, 2018)

1608.06299

https://docs.google.com/spreadsheets/d/Itg-oOcH_HbaPXIYhrDQ6i-k8YzvIhsYq6BzzbBD-Amc/edit#gid=1678121814

Why architectures?

- ML approach can be greatly simplified if structure of data mirrors structure of problem
- LLP problems are very complicated reconstruction questions
- Can we find architectures that match a specific problem?
 - Possible shortcuts?
- Brief overview of NN architectures

High-level

Representation

Regular grid

Lorentz vectors

Point cloud

Convolution

Train these weights

Efficient use of weights and natural encoding of translational symmetry.

Convolution network

- How to build a convolution network?
 - Multiple parallel and successive convolutions
 - Pooling
 - Simple network in the end
- ID Convolutions!
- 3D Convolutions!

Simple CNN

stage	output	ResNet-50		ResNeXt-50 (32×4d)	
conv1	112×112	7×7, 64, stride 2		7×7, 64, stride 2	
	56×56	3×3 max pool, stride 2		3×3 max pool, stride 2	
conv2		1×1, 64		[1×1, 128	
CONVE		3×3, 64	$\times 3$	$3 \times 3, 128, C=32$	$\times 3$
		1×1, 256		1×1, 256	
		[1×1, 128]		[1×1, 256]	
conv3	28×28	3×3, 128	×4	3×3, 256, C=32	$\times 4$
		$[1\times1,512]$		$[1\times1,512]$	
		1×1, 256]	[1×1,512	
conv4	14×14	$3 \times 3,256$	×6	$3 \times 3,512, C=32$	×6
		1×1, 1024		[1×1, 1024]	
		$1\times1,512$]	[1×1, 1024	
conv5	7×7	3×3, 512	×3	3×3, 1024, <i>C</i> =32	$\times 3$
		1×1, 2048		1×1, 2048	
	1×1	global average pool		global average pool	
		1000-d fc, softmax		1000-d fc, softmax	
# params.		25.5×10^6		25.0×10^6	
FLOPs		4.1 ×10 ⁹		4.2 ×10 ⁹	

1611.05431 1803.00107

ResNeXt50 (used with 1/4 filters)

Recurrent

- Inspired by natural language processing
- Work with a sequence of inputs
- Inputs can change the state of the cell (Long Short Term Memory)
- Think of
 - One input = One jet constituent

LSTM

Pointwise Operation

Layer

Vector Transfer

Concatenate

- Regular 2D grid of data
 - One or more numbers/pixel
- Convolutional networks

Sequence

This is a sentence.

- Ordered inputs
 - Any number of properties
- LSTM/GRU, Attention

Point Cloud / Particle Cloud

- No intrinsic order
- Outside HEP:
 - 3D coordinates in xyz-space
- In HEP:
 - eg 2D coordinates in eta/phi-space
 - Additional properties
 - Energy, flavour tags, ..
- Deep Sets (later) and Graph Convolution

Graph: A set of vertices and edges

Represent as:

List of vertices (multiple features/vertex possible)

Adjacency matrix (which vertices are connected and how strong)

How to generalise convolution to graphs?

Edge Convolution

L Gouskos, H Qu https://indico.cern.ch/event/745718/contributions/3202526
Y Wang et al, Dynamic Graph CNN for Learning on Point Clouds, 1801.07829

- For each point:
 - Define local area as K nearest neighbours using coordinates (ie eta/phi metric)

Alternative: Neural Message Passing for Jet Physics I Henrion et al. Procs. of the Deep Learning for Physical Sciences Workshop at NIPS (2017)

Convolution filter equivalent:

$$e_{ij} = h_{\theta}(x_i, x_j)$$
 Symmetric: same for all $x_i' = \sum_{j} e_{ij}$ nodes and centers

Recompute distance at each layer: Dynamic Graph CNN

Edge Convolution

L Gouskos, H Qu https://indico.cern.ch/event/745718/contributions/3202526
Y Wang et al, Dynamic Graph CNN for Learning on Point Clouds, 1801.07829

Another way to deal with unordered inputs

Theorem 7 Let $f:[0,1]^M \to \mathbb{R}$ be a permutation invariant continuous function iff it has the representation

$$f(x_1, ..., x_M) = \rho\left(\sum_{m=1}^{M} \phi(x_m)\right)$$
 (18)

for some continuous outer and inner function $\rho: \mathbb{R}^{M+1} \to \mathbb{R}$ and $\phi: \mathbb{R} \to \mathbb{R}^{M+1}$ respectively. The inner function ϕ is independent of the function f.

For physics

Observable **Particles** Per-Particle Representation **Event Representation** Latent Space

Energy/Particle Flow Network

General:

PFN: $F\left(\sum_{i=1}^{M} \Phi(p_i)\right)$

IRC safe:

EFN: $F\left(\sum_{i=1}^{M} z_i \Phi(\hat{p}_i)\right)$

Energy Flow Networks: Deep Sets for Particle Jets, PT Komiske, EM Metodiev, J Thaler, 1810.05165

Capsule Network

- CNNs learn features, problem of spatial correlation
- Capsules are a new building block for image recognition
- Learn instantiation vector
- Connection by agreement (co-firing)

Dynamic Routing Between Capsules S Sabour, N Frosst, GE Hinton 1710.09829 (medium.com)

Softmax & Routing:

$$c_{ij} = \frac{\exp(b_{ij})}{\sum_{k} \exp(b_{ik})}$$
$$b_{ij} \leftarrow b_{ij} + \hat{\mathbf{u}}_{j|i}.\mathbf{v}_{j}$$

Dynamic Routing Between Capsules S Sabour, N Frosst, GE Hinton 1710.09829
pechyonkin.me

Squash:

$$\mathbf{v}_j = \frac{||\mathbf{s}_j||^2}{1 + ||\mathbf{s}_j||^2} \frac{\mathbf{s}_j}{||\mathbf{s}_j||}$$

- Vector instead of scalar representation
 - Instantiation and relative positioning
- Routing by agreement

23

High-level

Representation

Regular grid

Lorentz vectors

Point cloud

Information

What can we give the network to train?

Supervised

Train on MC simulation or Other source of labels (humans)

Apply to Data

Weakly supervised

Unsupervised

$$L_{M_1/M_2} = \frac{p_{M_1}}{p_{M_2}} = \frac{f_1 p_S + (1 - f_1) p_B}{f_2 p_S + (1 - f_2) p_B} = \frac{f_1 L_{S/B} + (1 - f_1)}{f_2 L_{S/B} + (1 - f_2)}$$

1708.02949

Bonus Slides

Backup

P-CNN

Variable	iable Definition		
$\overline{\Delta\eta}$	difference in pseudorapidity between the particle and the jet axis		
$\Delta\phi$	difference in azimuthal angle between the particle and the jet axis		
$\overline{-\log p_T}$	logarithm of the particle's p_T		
$\log E$	logarithm of the particle's energy		
$\log rac{p_T}{p_T(ext{jet})} \ \log rac{E}{E(ext{jet})}$	logarithm of the particle's p_T relative to the jet p_T		
$\log rac{E}{E(ext{jet})}$	logarithm of the particle's energy relative to the jet energy		
ΔR	angular separation between the particle and the jet axis $(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$		

14 ID convolution layers + fully connected

Kernel size 3

(in particle sp

(in particle space)

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Decide what to forget

Previous hidden state

Pointwise Operation Vector

Transfer

Concatenate

Copy

http://colah.github.io/

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Decide which inputs to keep?

update cell state

31

decide output

Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation
K Cho et al
arXiv: 1406.1078

GRU Gated Recurrent Unit

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

- Combine forget and input gate
- Combine cell state and hidden state