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1) Monday 13:30: Plenary introductory talks from 
the conveners of the groups 

2) Preparation sessions on Monday 

3) Parallel working sessions on Tuesday 

4) Working group reports / summary talks on 
Wednesday at 11:35

Overview of status quo

Here we are



 3

LLP Searches ML Techniques

Potential Discovery
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Topics
• (How) can we improve LLP searches using ML?

• Wide range of non-standard signatures

• Avoid over optimisation

• Anomaly finding?

• Goals today

• Understand available datasets - see what is needed

• Discuss NN architectures and see how they can be 
mapped to LL problems

• (If time & interest): ML tutorial
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Datasets

• No (simulated) data - no  
machine learning

• Need to understand what

• ..is available 

• ..can be made available

• ..should be produced

• Fidelity:

• Generator- / Delphes / Geant / Data
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Link

https://docs.google.com/forms/d/e/1FAIpQLScVrIV0_WGlicWyJbPkpkMJdq63MnMfRwDa-U9wVvIQFCz1Fg/viewform
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Results

1803.08974

1708.02243

1608.06299

https://docs.google.com/spreadsheets/d/1tg-oOcH_HbaPX1YhrDQ6i-
k8YzvIhsYq6BzzbBD-Amc/edit#gid=1678121814

(toy)

https://docs.google.com/spreadsheets/d/1tg-oOcH_HbaPX1YhrDQ6i-k8YzvIhsYq6BzzbBD-Amc/edit#gid=1678121814
https://docs.google.com/spreadsheets/d/1tg-oOcH_HbaPX1YhrDQ6i-k8YzvIhsYq6BzzbBD-Amc/edit#gid=1678121814


the impact of the size of the test set on the quoted results, the performance metrics of the

best performing network were evaluated on 15, 4-batch subsamples of the test set. This

evaluation was performed only for the best performing network in the LHC 2016 pileup

scenario due to computational constraints.

3 Network Architecture

The networks studied here were implemented using the Keras suite [46] with the Theano

[47] backend. The input layer of the network consists of a vector of jet constituent pT, ⌘

and � coordinates. The network depth and number of nodes per layer were tuned manually,

exploring a space between 4-6 layers and 40-1000 nodes per layer. ReLu activation [48]

was used for the hidden layers while a sigmoid is used for the output node. The network

was trained with the Adam optimiser [49] for a maximum of 40 epochs. Early stopping

with a patience parameter of 5 epochs on the loss in the validation set was used. The model

used for evaluating the performance on the test set is the model with the best performance

(lowest binary cross-entropy loss) on the validation set. This method prevents overtraining

by freezing the model once performance on the validation set begins to decrease. The final

chosen network architecture consists of 4 hidden layers, with 300, 102, 12 and 6 nodes per

layer. Figure 2 shows a schematic of the overall network architecture used in this study.

... ... ...
φ1

η1
p1T

Input Layer�
Individual  $POTUJUVFOUT

Hidden Layers�
� layers, 300-� nodes per layer

Output Layer
Binary Prediction

Figure 2. Schematic of overall network architecture used.

3.1 Preprocessing

The key idea behind preprocessing the jets is that, by incorporating domain specific knowl-

edge about the jet physics, the dimensionality of the problem can be reduced. The prepro-

cessing steps were inspired by previous papers [22, 23, 25, 28] and determined through a

series of studies. Jets are scaled, translated, rotated and flipped.

First, the pT of all jet constituents is scaled by 1/1700 to ensure that the majority of jet

constituents have a pT approximately between zero and one. This ensures that the value of

the input nodes corresponding to the pT of the jet constituents are roughly within the same

order of magnitude as the input nodes corresponding to the ⌘ and � of the constituents.

– 6 –
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FIG. 1. QCD-motivated recursive jet embedding for classifi-
cation. For each individual jet, the embedding hjet

1 (tj) is com-
puted recursively from the root node down to the outer nodes
of the binary tree tj . The resulting embedding is chained to
a subsequent classifier, as illustrated in the top part of the
figure. The topology of the network in the bottom part is
distinct for each jet and is determined by a sequential recom-
bination jet algorithm (e.g., kt clustering).

B. Full events

We now embed entire events e of variable size by feed-
ing the embeddings of their individual jets to an event-
level sequence-based recurrent neural network.

As an illustrative example, we consider here a gated re-
current unit [21] (GRU) operating on the pT ordered se-
quence of pairs (v(tj),h

jet
1 (tj)), for j = 1, . . . ,M , where

v(tj) is the unprocessed 4-momentum of the jet tj and

hjet
1 (tj) is its embedding. The final output hevent

M
(e) (see

Appendix B for details) of the GRU is chained to a subse-
quent classifier to solve an event-level classification task.
Again, all parameters (i.e., of the inner jet embedding
function, of the GRU, and of the classifier) are learned
jointly using backpropagation through structure [9] to
minimize the loss Levent. Figure 2 provides a schematic
of the full classification model. In summary, combining
two levels of recurrence provides a QCD-motivated event-
level embedding that e↵ectively operates at the hadron-
level for all the particles in the event.

In addition and for the purpose of comparison, we
also consider the simpler baselines where i) only the 4-
momenta v(tj) of the jets are given as input to the GRU,
without augmentation with their embeddings, and ii) the
4-momenta vi of the constituents of the event are all di-
rectly given as input to the GRU, without grouping them
into jets or providing the jet embeddings.

IV. DATA, PREPROCESSING AND
EXPERIMENTAL SETUP

In order to focus attention on the impact of the
network architectures and the projection of input 4-
momenta into images, we consider the same boosted W
tagging example as used in Refs. [1, 2, 4, 6]. The signal
(y = 1) corresponds to a hadronically decaying W boson
with 200 < pT < 500 GeV, while the background (y = 0)
corresponds to a QCD jet with the same range of pT .
We are grateful to the authors of Ref. [6] for shar-

ing the data used in their studies. We obtained both
the full-event records from their PYTHIA benchmark sam-
ples, including both the particle-level data and the tow-
ers from the DELPHES detector simulation. In addition,
we obtained the fully processed jet images of 25⇥25 pix-
els, which include the initial R = 1 anti-kt jet clustering
and subsequent trimming, translation, pixelisation, rota-
tion, reflection, cropping, and normalization preprocess-
ing stages detailed in Ref. [2, 6].

Our training data was collected by sampling from the
original data a total of 100,000 signal and background jets
with equal prior. The testing data was assembled sim-
ilarly by sampling 100,000 signal and background jets,
without overlap with the training data. For direct com-
parison with Ref. [6], performance is evaluated at test
time within the restricted window of 250 < pT < 300
and 50  m  110, where the signal and background jets
are re-weighted to produce flat pT distributions. Results
are reported in terms of the area under the ROC curve
(ROC AUC) and of background rejection (i.e., 1/FPR) at
50% signal e�ciency (R✏=50%). Average scores reported
include uncertainty estimates that come from training 30
models with distinct initial random seeds. About 2% of
the models had technical problems during training (e.g.,
due to numerical errors), so we applied a simple algo-
rithm to ensure robustness: we discarded models whose
R✏=50% was outside of 3 standard deviations of the mean,
where the mean and standard deviation were estimated
excluding the five best and worst performing models.

For our jet-level experiments we consider as input to
the classifiers the 4-momenta vi from both the particle-
level data and the DELPHES towers. We also compare the
performance with and without the projection of those
4-momenta into images. While the image data already
included the full pre-processing steps, when considering
particle-level and tower inputs we performed the initial
R = 1 anti-kt jet clustering to identify the constituents of
the highest pT jet t1 of each event, and then performed
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Hammer looking for Nail
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Why architectures?
• ML approach can be greatly simplified if structure of data 

mirrors structure of problem

• LLP problems are very complicated reconstruction 
questions

• Can we find architectures that match a specific problem?

• Possible shortcuts?

• Brief overview of NN architectures
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Sequences

High-level Regular grid

Point cloud

Lorentz vectorsRepresentation



Convolution
Train these weights

=

Efficient use of weights and natural encoding 
of translational symmetry.
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Convolution network
• How to build a convolution 

network?

• Multiple parallel and successive 
convolutions

• Pooling

• Simple network in the end

• 1D Convolutions!

• 3D Convolutions!
9

Figure 4. Architecture [29] of our default networks for fully pre-processed images, defined in Tab. I.

classification is a parameter that allows to link the signal e�ciency ✏S with the mis-tagging rate of
background events ✏B.

In Sec. III we will use this trained network to test the performance in terms of ROC curves,
correlating the signal e�ciency and the mis-tagging rate.

Before we move to the performance study, we can get a feeling for what is happening inside
the trained ConvNet by looking at the output of the di↵erent layers in the case of fully pre-
processed images. In Fig. 5 we show the di↵erence of the averaged output for 100 signal and 100
background images. For each of those two categories, we require a classifier output of at least 0.8.
Each row illustrates the output of a convolutional layer. Signal-like red areas are typical for jet
images originating from top decays; blue areas are typical for backgrounds. The first layer seems
to consistently capture a well-separated second subjet, and some kernels of the later layers seem
to capture the third signal subjet in the right half-plane. However, one should keep in mind that
there is no one-to-one correspondence between the location in feature maps of later layers and the
pixels in the input image.

Figure 5. Averaged signal minus background for our default network and full pre-processing. The rows
correspond to ConvNet layers one to four. After two rows MaxPooling reduces the number of pixels by
roughly a factor of four. The columns indicate the feature maps one to eight. Red areas indicate signal-like
regions, blue areas indicate background-like regions.
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Simple CNN

ResNeXt50
(used with 1/4 filters)

1611.05431  
1803.00107



Recurrent

• Inspired by natural language processing

• Work with a sequence of inputs

• Inputs can change the state of the cell (Long Short Term Memory)

• Think of

• One input = One jet constituent

http://colah.github.io/  14



LSTM

http://colah.github.io/  15



Image
• Regular 2D grid of data

• One or more numbers/pixel

• Convolutional networks

Point Cloud /  
Particle Cloud

• No intrinsic order

• Outside HEP:

• 3D coordinates in xyz-space

• In HEP:

• eg 2D coordinates in eta/phi-space

• Additional properties

• Energy, flavour tags, ..

• Deep Sets (later) and Graph 
Convolution

Sequence

• Ordered inputs

• Any number of properties

• LSTM/GRU, Attention

This is a sentence.
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Graph neural networks
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Graphs

Graph: A set of vertices and edges

Represent as:
List of vertices (multiple features/vertex possible)

Adjacency matrix (which vertices are connected and how strong)

How to generalise convolution to graphs?
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Edge Convolution

• For each point:

• Define local area as K nearest neighbours 
using coordinates (ie eta/phi metric)

• Convolution filter equivalent:

• Recompute distance at each layer: Dynamic Graph CNN

eij = h✓(xi, xj)

x0
i =

X

j

eij
Symmetric: same for all 

nodes and centers

L Gouskos, H Qu https://indico.cern.ch/
event/745718/contributions/3202526
Y Wang et al, Dynamic Graph CNN for 
Learning on Point Clouds, 1801.07829

Alternative: Neural Message Passing for 
Jet Physics  I Henrion et al.  Procs. of the 

Deep Learning for Physical Sciences 
Workshop at NIPS (2017)

https://indico.cern.ch/event/745718/contributions/3202526
https://indico.cern.ch/event/745718/contributions/3202526
https://indico.cern.ch/event/745718/contributions/3202526
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Edge Convolution
L Gouskos, H Qu https://indico.cern.ch/
event/745718/contributions/3202526
Y Wang et al, Dynamic Graph CNN for 
Learning on Point Clouds, 1801.07829

https://indico.cern.ch/event/745718/contributions/3202526
https://indico.cern.ch/event/745718/contributions/3202526
https://indico.cern.ch/event/745718/contributions/3202526


Another way to deal 
with unordered inputs

 20Deep Sets, M Zaheer et al, 1703.06114



For physics
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Energy Flow Networks: Deep Sets for Particle Jets, PT Komiske, EM 
Metodiev, J Thaler, 1810.05165

General :

IRC safe:
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Dynamic Routing Between Capsules
S Sabour, N Frosst, GE Hinton
1710.09829
(medium.com)

Capsule Network

• CNNs learn features, problem of spatial 
correlation

• Capsules are a new building block for 
image recognition

• Learn instantiation vector

• Connection by agreement (co-firing)

http://medium.com
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Dynamic Routing Between Capsules
S Sabour, N Frosst, GE Hinton
1710.09829
pechyonkin.me

Squash:Softmax & Routing:

• Vector instead of scalar representation

• Instantiation and relative positioning

• Routing by agreement

vj

http://pechyonkin.me
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Sequences

High-level Regular grid

Point cloud

Lorentz vectorsRepresentation



Information
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• What can we give the network to train?

Train
on MC simulation

or
Other source of labels

(humans)

Apply to Data

Supervised Weakly supervised Unsupervised
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

1708.02949



Bonus Slides
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Backup

 27
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P-CNN

14 1D convolution layers + fully connected
Kernel size 3  
  (in particle space)



http://colah.github.io/ 29

Decide what to forgetInput

Previous hidden state



http://colah.github.io/ 30

Decide which inputs to keep?



http://colah.github.io/ 31

update cell state

Previous cell state New cell state



http://colah.github.io/ 32

decide output

New hidden state



GRU

http://colah.github.io/ 33

Gated  
Recurrent 
Unit

Learning Phrase Representations using RNN 
Encoder-Decoder for Statistical Machine Translation

K Cho et al
arXiv: 1406.1078

• Combine forget and input gate

• Combine cell state and hidden state


