LHC Context

Luminosity

- **2021**: high-lumi setup period, ~20/fb
 - most standard analyses will not improve much from this year
 - ideal for LLP dedicated trigger menu

- **2022-2023**: high-lumi production, ~100/fb/y
 - will have to share bandwidth more
 - still many opportunities: put into effect lessons learned from 2021

Energy

- **14 TeV**, at some point; but when?
 - depends on magnet training
 - not clear when we will know how much when
 - experiments are asked for input

- LLPs prefer **13 TeV**? no need for trigger for SM xsec measurements yet
Run3 trigger menu discussions started

- in physics groups, then CMS wide
- “crazy ideas” explicitly welcome!
 - LLP's are on the map
 - which signatures are “last time possible”?
- important point will be to how to justify bandwidth
 - physics justification → theoretical interest?
 - open signature triggers...?
 - rates as a function of inst.lumi and/or PU?
 - can use data
 - trigger purity → does the trigger collect lots of useless events?
 - signal efficiency → does the trigger work? need simulations
- personpower plays a role too
 - are there people to develop the trigger? prioritize?
 - are there people to do the analysis? does that even matter?
L1 trigger

- opportunities to improve existing or propose new algorithms
 - CalRatio trigger à-la-ATLAS → we have the capabilities now
 - displaced muons → can go to low thresholds asking for 2 muons
 - hit clustering in MU? (RoI)
 - what else?
 - add cross triggers
 - combine with prompt objects, eg. with ISR jet/photon
 - combine 2 displaced objects
 - push down on thresholds assuming 2 LLPs decaying in 2 subdetectors
 - only for short lifetimes
 - are there significant shifts in rates from big triggers worth pushing for?
 - eg. eat up large part of bandwidth to keep MET trigger as low as possible?
 - correlations among different bunch crossings possible
 - useful for very massive LLPs
 - advantage: can develop on data, also with high PU
 - not much time for novelties...
• maximize **ISR+LLP coverage**
 ▪ monojet + LLP, monophoton + LLP, MET trigger ; what is better?

• **cross triggers**
 ▪ combine single LLP with “prompt” object
 ▪ catch two LLP's decaying in two different subdetectors
 ▪ correlate LLPs, eg. vertex fitting (or not)

• **new or adapted reconstruction algorithms**
 ▪ eg. tracking at HLT != offline, in particular for LLP
 ▪ how soft can we go, reliably? calibrations?
 ▪ Machine Learning?

• **extend the LLP scope**: explore more (displaced) photons, taus, b's...

• **cases where L1 seed could be every L1 event?**
 ▪ probably for soft signatures, case-by-case
• golden age for scouting
 ▪ store less event content to reach high rate output (ATLAS: TLA, LHCb: Turbo)
 ▪ go beyond current dijet and dimuon, staying inclusive for LLPs
 ▪ hard to prepare in advance what information to save, without knowing all potential customers of a signature
 ▪ think ahead of trigger efficiency measurements → hard after the facts!
 backup triggers, eg. with full event content
 ▪ be creative, eg. hybrid scouting with regional-raw, then regional reconstruction
• a case for more B or other parking? [store events for later reconstruction]
• profit from potential HLT hardware changes