Measurement of heavy-flavour jet with electrons from heavy-flavour hadron decays in pp and p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV with ALICE

Shingo Sakai (Univ. of Tsukuba) for the ALICE Collaboration

Motivation

- Heavy quarks (charm and beauty) are strongly interacting with hot & dense QCD matter produced in Pb-Pb collisions
 - Strong suppression of heavy quarks production ($R_{AA} < 1$)
 - In-medium energy loss of heavy quarks in the QCD medium Desitive elliptic flow of particles from heavy flower bedran desays (
 - Positive elliptic flow of particles from heavy-flavour hadron decays ($v_2 > 0$) Heavy quarks participate to collective motion
- Observed positive v₂ of particles from heavy-flavour hadron decays in small system (p-Pb collisions)
 - Indicate final state effects in small system ?
 - Modification of heavy-quark production (R_{pPb}) not observed so far

- Probe small system by measuring jets from heavy quarks
 If there are final state effects, i.e. energy loss
 - Production yield is suppressed
 - Radial profile of jets is modified (broaden the jet shape)

Heavy-flavour jet measurement with electrons

- Idea: use electrons from heavy-flavour hadron decays (e ← HF) to identify jets originally from charm and beauty quarks
- Reconstruct charged-particle jets (FastJet algorigthm, Anti-k_T)
- Find electrons from open heavy-flavour hadron decays in reconstructed jets
 momentum matching between electron and track in
 - the reconstructed jets
- Subtract jets containing photonic electrons and hadrons, and get jets containing electrons from heavy-flavour hadron decays $(e_{\rm HF}\text{-jet})$

• Reconstruction efficiency, unfold $p_{\rm T}$ spectrum for detector response and background fluctuations

e^{HF}-jet (pp) with R=0.3, 0.4 and 0.6

- Reference for p-Pb collisions
- Compared with a pQCD calculation (POWHEG+PYTHIA)
 The cross sections are in good agreement with the pQCD calculation for different jet resolutions
 - POWHEG : POWHEG-v2(r3363), CTEQ6.6, HF pair creation

Results (p-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$) Cross sections (R=0.3, 0.4 and 0.6) ALCE Premisery prist $\frac{K_{N-1} \times 61}{M}$ Dependence of $k_{N-1} \times 61$ $M = k_{N-1} \times 61$ <

■ Resolution parameter (R) dependence of R_{pPb}

- R_{pPb} of e_{HF}-jet measured with R=0.3, 0.4 and 0.6 are consistent with unity
 No modification of heavy-flavours jet yield in p-Pb collisions
 No R dependence
- **□** Ratio of the cross sections $(\sigma_{R=0.3}/\sigma_{R=0.6})$

- Ratio of the cross section of e_{HF} -jet measured $\sigma_{R=0.3}/\sigma_{R=0.6}$ in pp & p-Pb
- R dependence of jet production is sensitive to modification of jet shape
 - pp and p-Pb results are similar within uncertainties
 - Consistent with POWHEG prediction
 - No modification of jet shape from heavy-flavour hadron decays in p-Pb collisions
- *R* dependence of e_{HF}-jet in p-Pb collisions indicates that there is no final state effect (energy loss) on heavy-flavour productions in small systems

— Summary

- Measured jets containing electrons from heavy-flavour hadron decays in pp & p-Pb
- with various jet resolution parameters; *R*=0.3, 0.4 and 0.6
- Consistent with a pQCD calculation (POWHEG+PYTHIA) for jets from charm and beauty in pp collisions
- R_{pPb} of e_{HF} -jet measured with R=0.3, 0.4 and 0.6 is equal to unity
- σ_{R=0.3}/σ_{R=0.6} of e_{HF}-jet are similar in pp and p-Pb within uncertainties
 reproduced by pQCD calculations
- Indicates there is no evidence for final state effect (energy loss) on heavy-flavour productions in small systems