

Production of pions, kaons and protons in p-Pb collisions

at $\sqrt{s_{\text{NN}}}$ = 8.16 TeV with ALICE at LHC

Pavel Larionov* on behalf of the ALICE Collaboration

*Laboratori Nazionali di Frascati, Italy 🙇: pavel.larionov@cern.ch

Results

- Spectra become harder as the multiplicity increases
- The hardening is more pronounced for heavier particles • Similar effect observed previously in both Pb-Pb [1] pp [2] collisions and p-Pb collisions at lower energy [3]
- → Hint of a collective-like behaviour
- → Mass ordering as expected from hydrodynamics

Particle ratios (K/ π and p/ π)

- Comparison between low and high multiplicity classes
- Weak evolution with multiplicity
- Spectra is pushed towards higher momentum at high multiplicity
- Reminiscent of radial flow observed in Pb-Pb collisions [1]
- Similar trend is observed in p-Pb collisions at 5.02 TeV [3]

Mean p_T

- Mean p_T values are calculated after fitting the differential p_T spectra for each multiplicity class with a Blast-Wave function [4]
- Well pronounced mass-dependent hardening of the spectra
- Agreement with 5.02 TeV p-Pb data within systematic uncertainties, no dependence on the collision energy for a given multiplicity

p_T integrated yield ratios

- dN/dy ratio of K/π and p/π vs. $\langle dN_{ch}/d\eta \rangle$
- Comparison with the lower energy data: the integrated particle yields exhibit a continuous evolution with the charged-particle multiplicity independent of the collision energy

Blast-Wave fits to spectra

- $ightharpoonup T_{kin}$ = kinetic freeze-out temperature
- \blacktriangleright $\langle \beta_T \rangle$ = transverse radial flow velocity
- \rightarrow n = velocity profile, considering a superposition of the individual

thermal sources with common expansion

velocity β_T and freeze-out temperature T_{kin}

• Free parameters are obtained from a simultaneous fit to the measured $\pi/K/p$ spectra *also uses three normalization factors

- Contours correspond to 1σ uncertainties: statistical and systematic uncertainties are added quadratically
- p-Pb data at 8.16 TeV: higher T_{kin} is observed w.r.t lower energy data
- At high multiplicity p-Pb data show similar trend as observed in Pb-Pb collisions. However, such behaviour can be reproduced by PYTHIA with colour reconnection [3][6]

Summary

- Measurements of π , K and p spectra as a function of multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV has been presented
- The spectra exhibit a hardening tendency towards high multiplicity collisions → radial flow, MPI or something else?
- The p_T -differential p/ π ratio is boosted towards higher p_T with increasing multiplicity
- Blast-Wave analysis: the p-Pb data, compared to Pb-Pb, show a weaker correlation between T_{kin} and $\langle \beta_T \rangle$: only at very high multiplicity the trend is similar to the one of Pb-Pb

References

[4] E. Schnedermann, J. Sollfrank, and U. Heinz. Phys. Rev. C 48:2462–2475, Nov. 1993 [5] ALICE collaboration, <u>arXiv:1910.07678</u> [nucl-ex] [6] T. Sjöstrand et al. Comput. Phys. Commun. 191 (2015) 159-177

[1] ALICE collaboration, Phys. Rev. C 88, 044910 (2013) [2] ALICE collaboration, Phys. Rev. C **99**, 024906 (2019) [3] ALICE collaboration, Phys. Lett. B 728 (2014) 25-38