D-meson production in Pb-Pb collisions with ALICE at the LHC

Stefano Trogolo on behalf of the ALICE Collaboration Università degli Studi di Padova - INFN Padova 28th Quark Matter Conference - <u>Wuhan 4-9 November 2019</u>

Heavy flavours in the QGP

- Heavy flavours (i.e. c and b quarks) are mainly produced in *hard-scattering process* on short time scale (~ 0.02—0.1 fm/c) in the early stage of the collision
- They probe the full evolution of the QGP created in ultra-relativistic heavy-ion collisions, interacting with its constituents

D-meson reconstruction

$$D^{0} \to K^{-}\pi^{+} (BR = 3.89\%) \qquad D^{*+} \to D^{0} (\to K^{-}\pi^{+})\pi^{+} (BR = 67.7\% \times 3.93\%)$$

$$D^{+} \to K^{-}\pi^{+}\pi^{+} (BR = 9.46\%) \quad D^{+}_{s} \to \phi (\to K^{+}K^{-})\pi^{+} (BR = 2.27\%)$$

- Reconstruction of decay vertices displaced ~100 microns from primary vertex combining pairs/ triplets of tracks
 - Particle identification (PID) of decay tracks and geometrical selection of displaced decay-vertex topology
 - \rightarrow NEW: D^0 for $p_T < 1$ GeV/c (0-10%) selected w/o vertexing and by exploiting only the PID capabilities
- Efficiency correction with Monte Carlo simulations using HIJING [1] events enriched with PYTHIA [2] $c\overline{c}$ and $b\overline{b}$ pairs. Beauty feed-down subtraction based on FONLL [3] calculations
- NEW: D_s^+ -signal extraction optimized with supervised Machine Learning techniques for $p_T < 3$ GeV/c (both centrality classes), for $p_T > 36$ GeV/c (0-10%) and for $p_T > 24$ GeV/c (30-50%)

Nuclear modification factor

$$R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}}$$

- < $T_{AA}>$ is the average nuclear overlap function, proportional to the number of binary nucleon-nucleon collisions
- o $d\sigma_{pp}/dp_T$ is the D-mesons cross section measured in pp collisions at $\sqrt{s}=5$ TeV
- It provides information about the of energy loss in the QGP which can occur via:
- inelastic process (gluon radiation) [4]

- \circ Prompt D $R_{\rm AA}$ in Pb-Pb collisions in three different centrality classes
- $R_{AA}(60-80\%) > R_{AA}(30-50\%) >$ $R_{AA}(0-10\%) \rightarrow$ suppression factor up to a factor 5 observed in the 10% most central Pb-Pb collisions for $p_T > 5$ GeV/c
- The suppression increases from peripheral (60-80%) [6] to central (0-10%) Pb-Pb collisions

Comparison with theoretical models

- O Heavy-quark transport in medium with realistic evolution can fairly describe the data for $p_T < 10 \text{ GeV/}c$ [7-13]
 - → interplay of collisional energy loss, radial flow, hadronisation via recombination
 - → good description for both central and semi-central collisions

- O Models based on pQCD [14-16] provide a good description of the data for $p_T > 10 \text{ GeV/}c$
 - → radiative energy loss dominant effect
 - → agreement in 0-10% centrality class, while a small tension in 30-50%

ALICE detectors

- Data sample used for the analysis
 - \rightarrow Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV **collected in 2018**
 - $\rightarrow \mathscr{L}_{int} \approx 114 \ \mu b^{-1} \ (0-10\%) \ and \ \mathscr{L}_{int} \approx 49 \ \mu b^{-1} \ (30-50\%)$

VI NOW VISIT NOW AND

Time Projection

Tracking

Chamber

 Particle identification (PID) via specific energy loss

Time-Of-Flight

 Particle identification via the time-of-flight measurement

Inner Tracking System

- Tracking
- Reconstruction of primary and secondary (decay) vertices

V0 detectors

- Trigger
- Centrality
- Frank Diam
- Event Plane determination (estimator of Reaction Plane)

Non-strange D-meson

- \circ R_{AA} of prompt D^0 , D^+ and D^{*+} in the 0-10% and 30-50% centrality class of Pb-Pb collisions are in agreement within uncertainties
 - R_{AA} of prompt D⁰ extended down to 0 GeV/ $c \rightarrow$ compute D⁰ R_{AA} p_T -integrated
- $Alpha_{AA}$ of prompt non-strange D mesons compared with those of charged particles and pions $Alpha_{AA}$ difference observed for $p_T < 8 \text{ GeV}/c$ possibly due to an interplay of several factors:
 - color-charge and quark-mass dependence of the energy loss
 - soft processes contribution to the yields of light-flavor hadrons
 - different effects of radial flow and hadronisation via recombination on charm and light quarks

Charming strangeness

- The comparison between D_s⁺ and nonstrange D mesons allows to inquire possible modification of the hadronisation mechanism
- O Hint of larger D_s^+ -meson R_{AA} w.r.t. that of non-strange D mesons for $p_T < 10 \text{ GeV}/c$
 - → expected in case of hadronisation via coalescence due to the enhanced production of s quarks in the QGP
- The double ratio between D_s+/D⁰ in Pb-Pb and the one in pp shows a hint of strangeness enhancement:

- ratios in 0-10% and 30-50% centrality classes are in agreement
- models including interactions with only collisional process [7] fairly describe the trend
- predictions based also on energy loss from medium-induced gluon radiation [8] or coalescence [13] overestimate the ratios

