

Theoretical Framework for Multi-harmonic Correlations in Heavy-ion Collisions

Cindy Mordasini, A. Bilandzic, D. Karakoç, S.F. Taghavi cindy.mordasini@tum.de, Technical University of Munich arXiv:1901.06968v2 [nucl-ex]

Symmetric Cumulants SC(m, n)

* Introduction of the Symmetric Cumulants to probe the genuine correlations between two flow amplitudes v_m and v_n

$$SC(m,n) = \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle$$

- New and independent set of observables
 - Better sensitivity to η/s of the QGP than what is accessible with the study of only v_n

ALICE Collaboration, PRL **117**, 182301 (2016)

- > Are there genuine correlations between more than two flow amplitudes?
 - New information which is inaccessible neither with SC(m, n) nor with only one flow amplitude v_n

Generalisation to Higher Orders

- \diamond Non trivial generalisation of SC(m, n) to higher orders
- * Shift of paradigm: Cumulant expansion done directly with the flow amplitudes v_n and not in the standard way with the azimuthal angles φ as the fundamental degrees of freedom
- Framework successfully generalised for any number and any combination of different flow amplitudes
- \Leftrightarrow Example: 3-harmonic Symmetric Cumulants SC(k, l, m)
- For the flow amplitudes v_k , v_l , v_m in the momentum space:

$$SC(k, l, m) = \langle v_k^2 v_l^2 v_m^2 \rangle - \langle v_k^2 v_l^2 \rangle \langle v_m^2 \rangle - \langle v_k^2 v_m^2 \rangle \langle v_l^2 \rangle$$
$$- \langle v_l^2 v_m^2 \rangle \langle v_k^2 \rangle + 2 \langle v_k^2 \rangle \langle v_l^2 \rangle \langle v_m^2 \rangle$$

• For the eccentricities ϵ_k , ϵ_l , ϵ_m in the coordinate space:

$$SC_{\epsilon}(k, l, m) = \langle \epsilon_{k}^{2} \epsilon_{l}^{2} \epsilon_{m}^{2} \rangle - \langle \epsilon_{k}^{2} \epsilon_{l}^{2} \rangle \langle \epsilon_{m}^{2} \rangle - \langle \epsilon_{k}^{2} \epsilon_{m}^{2} \rangle \langle \epsilon_{l}^{2} \rangle$$
$$- \langle \epsilon_{l}^{2} \epsilon_{m}^{2} \rangle \langle \epsilon_{k}^{2} \rangle + 2 \langle \epsilon_{k}^{2} \rangle \langle \epsilon_{l}^{2} \rangle \langle \epsilon_{m}^{2} \rangle$$

Toy Monte Carlo Simulations

Framework validated in a controlled environment

Cross-check with HIJING*

Higher order Symmetric Cumulants robust against nonflow

* M. Guylassy, X.N. Wang, Comput. Phys. Commun. 83, 307 (1994)

Predictions from MC-Glauber and iEBE-VISHNU†

- Predictions for Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV at LHC
- ❖ System smaller for peripheral collisions → More difficult to thermalize and to transfer the initial anisotropy into the final state
- \diamond Comparison between initial and final states with NSC(2,3,4) \rightarrow Correlations in the final state dominated by collective evolution

[†] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, Comput. Phys. Commun. **199**, 61 (2016)