

Production of J/ ψ in jets at mid-rapidity in pp collisions at \sqrt{s} = 13 TeV with ALICE

Yitao WU for the ALICE collaboration

University of Science and Technology of China (USTC)
State Key Laboratory of Particle Detection and Electronics, Hefei, China

Motivation

- Charm quarks can be used to probe the initial stage of pp collisions. Their production can be calculated according to pQCD
- Investigate the dominant sub-process in ${\rm J}/\psi$ production
- Understand the fragmentation mechanism of b- and c-jets by $p_{\rm T}$ fraction of J/ ψ carried in jets $z\equiv p_{\rm T}^{\rm J/\psi}/p_{\rm T}^{\rm jet}$
- Previous results from LHCb (published)
 and CMS (preliminary) differ from Pythia LO
 NRQCD predictions

Analysis strategy

- **Select** events with $J/\psi \rightarrow e^+e^-$ candidates
- Replace J/ ψ daughters with the J/ ψ track (3-momentum only)
- ullet Jet reconstructed using anti- k_{T} algorithm provided by FASTJET
- Re-clustering J/ ψ meson and charged tracks by R = 0.4 in $|\eta| < 0.5$
- Store tagged jet info
- $M_{e^+e^-}$, \tilde{L}_{xy} , $p_{T}^{e^+e^-}$, p_{T}^{jet} , z
- $p_{\rm T}$ range: [5, 35] GeV/c
- z range: [0.0, 1.0]
- **Signal** extraction with invariant mass spectrum
- Sideband used for background estimation
- Separate prompt and non-prompt by cuts on pseudo-proper decay length \tilde{L}_{xy}
- Subtract b-decay component in the prompt region

Detector response

- The migration across \mathbf{z} and jet p_{T} bins due to the jet p_{T} resolution should be corrected with 2D unfolding.
- The jet finding procedure was performed on detector and generator level separate-ly. Then the jets can be matched with the tagged J/ψ inside.

 $\chi^2/dof = 53/44$

ALICE Preliminary

• Generate 4D matrix for jet p_{T} and z of J/ ψ from b-hadron decay.

ALICE at LHC

Detectors

- V0 & EMCal for trigger
- ITS & TPC for tracking
- TPC & EMCal for electron PID

• Acceptance

- TPC : $|\eta| < 0.9$, $\Delta \varphi = 360^{\circ}$
- EMCal: $|\eta| < 0.7$, $\Delta \varphi = 107^{\circ}$
- DCal : $|\eta| < 0.7$, $\Delta \varphi = 7^{\circ}$
 - $+ 0.22 < |\eta| < 0.7, \Delta \varphi = 60^{\circ}$

Datasets

- pp, \sqrt{s} = 13 TeV, with EMCal triggered events in 2016 2018
- E_{th} (high) = 9 GeV, \mathcal{L}_{int} = 16 pb⁻¹
- E_{th} (low) = 4 GeV, \mathcal{L}_{int} = 1.5 pb⁻¹

J/ψ efficiency

- PYTHIA6 MB events + J/ψ
 - using PHOTOS to handle J/ψ decay
 - prompt with realistic $p_{\rm T}$ shape + flat in range 6-50 GeV/c
 - non-prompt according to PYTHIA6 bb process.
- Reconstruction $A \times \varepsilon$:
 - detector acceptance
 - trigger efficiency
 - selection efficiency
- Strong dependence on J/ψ $p_{\rm T}$ due to the trigger (onset) and electron PID (decrease)

Outlook

- The J/ ψ produced in jets at mid-rapidity have been measured in the range of 5 < $p_{\rm T}$ < 35 GeV/c in pp collisions at \sqrt{s} = 13 TeV with the ALICE detector.
- For the next step, we will study the impact of kinematic cuts on final fragmentation functions.

Reference

- 1. Baumgart, Matthew, et al. JHEP 1411 (2014) 003
- 2. LHCb Collaboration, Phys.Rev.Lett. 118 (2017) no.19, 192001
- 3. Kang, Zhong-Bo, et al. Phys.Rev.Lett. 119 (2017) no.3, 032001
- 4. Bain, Reggie, et al. Phys.Rev.Lett. 119 (2017) no.3, 032002
- 5. CMS Collaboration, CMS-PAS-HIN-18-012

