

Using Event Shape Engineering to study anisotropic flow of inclusive and identified particles in Pb-Pb collisions with ALICE

Catalin Ristea for the ALICE Collaboration Institute of Space Science (RO) catalin.ristea@cern.ch

Anisotropic flow

Heavy-ion collisions: initial state anisotropy <u>multiple interactions</u> final state momentum anisotropy, a phenomenon called *anisotropic flow* [1]

- Magnitude is quantified by the v_n coefficients in a Fourier series of the azimuthal distribution of produced particles [2]
 - v_2 elliptic flow, v_3 triangular flow, ...
- Constrains initial conditions, deconfined phase, particle production

$v_2\{2, |\Delta\eta|>2\}(p_{T})$ with q_2 : 5-10%, 30-40% centrality

mechanisms

Methods used to measure anisotropic flow

$$v_{n} = \frac{\langle uQ_{n}^{A} \rangle}{\sqrt{\frac{\langle Q_{n}^{A}Q_{n}^{B} \rangle \langle Q_{n}^{A}Q_{n}^{C} \rangle}{\langle Q_{n}^{B}Q_{n}^{C} \rangle}}}$$

 Inclusive, π, K, p measured with scalar product method [3]

- Particle of interest (POI) and references particles (RPs) separated by |Δη|>2, to suppress non-flow
- v_n of Λ, K⁰_s, Ξ, and Ω measured using invariant mass method [4]

 $v_n^{Tot}(m_{inv}) = v_n^{Sgn} \frac{N^{Sgn}}{N^{Tot}}(m_{inv}) + v_n^{Bg}(m_{inv}) \frac{N^{Bg}}{N^{Tot}}(m_{inv})$

Event Shape Engineering (ESE)

ν₂{2, |Δη|>2}

Select events with similar centralities and different shapes based on the event-byevent flow/eccentricity fluctuations [5] Flow vector \rightarrow q-distributions $Q_{n,x} = \sum_{i} \cos(n \varphi_i) \qquad Q_n = \{Q_{n,x}, iQ_{n,y}\}$ $Q_{n,y} = \sum_{i} \cos(n \varphi_i) \qquad q_n = |Q_n| / \sqrt{M}$

• $p_T < 2 \text{ GeV}/c$: mass ordering \rightarrow interplay between radial and elliptic flow • $p_T \sim 2-3 \text{ GeV}/c$: crossing between v_2 of mesons and baryons

- $3 < p_T < 10 \text{ GeV/c: } v_2(\text{baryons}) > v_2(\text{mesons})$
 - Particles grouping according to their type (mesons and baryons)
- $p_T > 10 \text{ GeV/c: no particle type dependence within uncertainties}$
- v₂^{q₂}/v₂^{unbiased} : same source of flow fluctuations
 No dependence on particle species

v_{3} {2, $|\Delta\eta|$ >2}(p_{T}) with q_{2} : 5-10%, 30-40% centrality

- q_2^{VOC} [6] used to select events with 30% larger or 20% smaller v_2 than the average
- ESE/unbiased: almost flat up to $p_T \sim 20$ GeV/c
 - Same source of flow fluctuations
 - Small deviations for p_T<3 GeV/c (different ellipticity)

v_{3} {2, $|\Delta\eta|$ >2}(p_{T}) with q_{3} : 5-10%, 30-40% centrality

ALICE Preliminary

30–40% |η| < 0.8

Pb–Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ h^{\pm}

unbiased

• 0-10% q

■ 10–20% q

♦ 20–30% q

+ 30-40% g

40−50% q

50–60% g

⊕ 60–70% q²

- Mass ordering at low p_{T} , baryon-meson grouping at intermediate p_{T}
- v_3 anti-correlated with q_2
- $v_3^{q_2}/v_3^{unbiased}$: same source of flow fluctuations
 - No dependence on particle species
 - Weak sensitivity for central collisions

CONCLUSIONS

Mass ordering at low p_T, baryon-meson grouping at intermediate p_T
 v₃^{q₃}/v₃^{unbiased}: same source of flow fluctuations
 No dependence on particle species

- $v_n^{q_n}$: same trends as found in the unbiased results
- Mass ordering at low p_{τ} , baryon-meson grouping at intermediate p_{τ}
- v_3 anticorrelated with q_2 (i.e., v_2)
- $v_n^{q_n} / v_n^{unbiased}$: same source of flow fluctuations
- No dependence on particle species

BIBLIOGRAPHY

J.-Y Ollitrault, Phys. Rev. D46, 229 (1992)
 S. Voloshin, Y. Zhang, Z.Phys.C70:665-672 (1996)
 C. Adler *et al.* [STAR Collaboration], Phys. Rev. C66 034904 (2002)
 N. Borghini, J.-Y. Ollitrault, Phys.Rev. C70 064905 (2004)
 J. Schukraft et al, PLB 719, 394 (2013)
 J. Adam *et al.* [ALICE Collaboration], Phys. Rev. C93 034916 (2016)