Anisotropic flow

Heavy-ion collisions: initial state anisotropy → final state momentum anisotropy, a phenomenon called *anisotropic flow* [1]

- Magnitude is quantified by the v_n coefficients in a Fourier series of the azimuthal distribution of produced particles [2]
- v_2, elliptic flow, v_3, triangular flow, v_4,... Constrain initial conditions, deconfined phase, particle production mechanisms

Methods used to measure anisotropic flow

\[
V_n = \left(\sum Q_i Q_j \right) \left(\sum Q_i Q_j \right)
\]

- Inclusive, π, K, p measured with scalar product method [3]
- Particle of interest (POI) and references particles (RPs) separated by $|\Delta \eta| > 2$, to suppress non-flow
- v_n of Λ, K^0, Ξ, and Ω measured using invariant mass method [4]

\[
v_n^{\text{inv}}(m_n) = v_n^{\text{unb}} N_n^{\text{unb}} (m_n) = v_n^{\text{unb}} N_n^{\text{unb}} (m_n)
\]

Event Shape Engineering (ESE)

- Select events with similar centralities and different shapes based on the event-by-event flow/eccentricity fluctuations [5]
- Flow vector $\rightarrow q$-distributions

$Q_n = \sum \cos (n \phi)$

$Q_n^{\text{unb}} = v_n^{\text{unb}} N_n^{\text{unb}}$ (i.e., ESE/unbiased: almost flat up to $p_T > 20$ GeV/c)

- Same source of flow fluctuations
- Small deviations for $p_T < 3$ GeV/c (different ellipticity)

$v_2(2, |\Delta \eta| > 2)(p_T)$ with q_3: 5-10%, 30-40% centrality

- Mass ordering at low p_T, baryon-meson grouping at intermediate p_T
- v_2 anti-correlated with q_3
- v_2^{unb}: same source of flow fluctuations
- No dependence on particle species
- Weak sensitivity for central collisions

CONCLUSIONS

- v_2^{unb}: same trends as found in the unbiased results
- Mass ordering at low p_T, baryon-meson grouping at intermediate p_T
- v_2 anticorrelated with q_3 (i.e., v_2)
- v_2^{unb}: same source of flow fluctuations
- No dependence on particle species

BIBLIOGRAPHY

5. J. Schukraft et al, PLB 719, 394 (2013)