Semi-inclusive hadron-jet productions in pp collisions
at $\sqrt{s} = 5.02$ TeV with ALICE

Yuxing Dang for the ALICE Collaboration

Motivation

Why hadron-jet?
- Observable can be calculated by pQCD
- A probe to study medium effect in nucleus-nucleus collisions
- Provide a good handle on the combinatorial background by varying trigger track intervals → possible low p_T, large R jet
- Trigger track close to surface, but no bias on recoil jets

Why study hadron-jet in pp collisions?
- Provide a reference study in nucleus-nucleus collisions.

Analysis Strategy

Measure jet recoiling from trigger hadron
- Choose signal and reference trigger track (TT) p_T intervals
- Divide data into two subsets for statistical independent signal and reference
- Select event if there is a trigger track within the defined p_T interval
- Select all jet candidates with $R = 0.2, 0.4$ and 0.5

Observable Δ_{recoil} is defined:

$$\Delta_{\text{recoil}} = \frac{1}{N_{\text{trigger}}} \frac{d^2N_{\text{jet}}}{dp_T^2 d\phi_{\text{jet}}} |_{TT_{\text{sig}}}
- c \cdot \frac{1}{N_{\text{trigger}}} \frac{d^2N_{\text{jet}}}{dp_T^2 d\phi_{\text{jet}}} |_{TT_{\text{ref}}}$$

Unfolding corrections and systematic calculation

Results

Comparison of Δ_{recoil} distribution in pp collisions and PYTHIA distribution

Conclusion

- Δ_{recoil} distributions in reasonable agreement with PYTHIA8 model calculations for $R = 0.2, 0.4$ and 0.5.
- Δ_{recoil} ratio for $R = 0.2$ to 0.4 reflect jet collimation behavior, which is slightly increasing with jet p_T, consistent with Monte Carlo simulation.
- Suppression in Pb-Pb collisions with respect to pp reference, no R dependence of suppression.
- Jet ratio is similar between pp and Pb-Pb collisions, a hint of difference on the ratio at low p_T.

yuxing.dang@cern.ch
Institute of Particle Physics, CCNU, Wuhan, China