

ALICE Simulation

Glauber MC

0.01

 $\langle |B|^2 \cos(2(\Psi_B - \Psi_2)) \rangle = \frac{1}{16}$

ALI-SIMUL-327188

Measurements of charge-dependent correlations in Xe-Xe collisions with ALICE

A. Danu for the ALICE Collaboration

Institute of Space Science (RO)

E-mail: Andrea.Danu@cern.ch

Chiral Magnetic Effect (CME)

$$\begin{split} \delta_{ab} = &\langle \cos(\varphi_a - \varphi_b) \rangle \approx \langle a_{1,a} a_{1,b} \rangle + B_{\text{in-plane}} + B_{\text{out-of-plane}} \\ \gamma_{ab} = &\langle \cos(\varphi_a + \varphi_b - 2\Psi_2) \rangle \approx -\langle a_{1,a} a_{1,b} \rangle + B_{\text{in-plane}} - B_{\text{out-of-plane}} \end{split}$$

• Correlators contain background effects (e.g.,local charge conservation + elliptic flow [6]) as well as potential CME signal

Could Xe-Xe collisions help to constrain the background?

- Perform MC Glauber [7] simulations with magnetic field
- $em{B}_s^\pm(au,\eta,m{x}_\perp)=\pm Zlpha_{EM}\sinh(Y_0\mp\eta)\int\mathrm{d}^2m{x}_\perp'
 ho_\pm(m{x}_\perp')[1- heta_\mp(m{x}_\perp')]$
- Parameters tuned to ALICE results [8]
- Calculate magnetic field at origin using spectator protons with the proper time $\tau = 0.1$ fm [9]

- $<|B|^2\cos(2(\Psi_B-\Psi_2))>$ quantifies the expected CME contribution
- Expected smaller CME contribution in Xe-Xe than in Pb-Pb collisions

 δ_{ab} : stronger correlation for opposite charge pairs compared to same charge → larger contribution from background effects

γ_{ab}: stronger correlation for opposite charge pairs compared to same charge → charge separation

 γ_{ab} (opp-same): can be used to study the CME Indication of charge separation

Centrality (%)

Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

 $Xe-Xe\sqrt{s_{NN}} = 5.44 \text{ TeV}$

Centrality(%)

- $\gamma_{ab}(|\eta_a-\eta_b|)$: opposite charge pairs show a weak (if any) dependence while the same charge pairs show a strong dependence
- $\gamma_{ab}(|p_{Ta}-p_{Tb}|)$: opposite charge pairs show a strong dependence while the same charge pairs show no dependence
- $\gamma_{ab}((p_{Ta}+p_{Tb})/2)$: opposite charge pairs show a weak dependence while the same charge pairs show a strong correlation

CME: Xe-Xe vs Pb-Pb collisions

γ_{ab} in Xe-Xe collisions has similar values as in Pb-Pb collisions when divided by v₂ [10], except peripheral collisions

y_{ab} (opp-same) in Xe-Xe collisions has similar values as in Pb-Pb collisions within uncertainties

→ Background dominates using results from magnetic field simulation

Summary

• First measurement of charge-dependent correlations in Xe-Xe collisions performed in ALICE

- MC Glauber simulations with magnetic field suggest smaller CME contribution in Xe-Xe than in Pb-Pb collisions
- y_{ab} (opp-same) similar values as in Pb-Pb collisions within uncertainties
 - \rightarrow Large background contribution to γ_{ab} (opp-same)

References

- [1] W. T. Deng and X. G. Huang, Phys. Rev. C 85, 044907 (2012)
- [2] S. S. Chern and J. Simons, Annals Math. 99, 48 (1974)
- [3] D. Kharzeev, PLB 633, 260 (2006)
- [4] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 81, 054908 (2010)
- [5] S. A. Voloshin, Phys. Rev. C 70, 057901 (2004)
- [6] S. Schlichting and S. Pratt, Phys. Rev. C83, 014913 (2011)
- [7] M. Miller et al., ARNPS 57, 205 (2007)
- [8] ALICE Collaboration, ALICE-PUBLIC-2018-011 [9] K. Fukushima, D. Kharzeev and H. J. Warringa, Phys. Rev. D 78, 074033 (2008)
- [10] S. Acharya et al. [ALICE Collaboration], Phys. Lett. B 784, 82 (2018)