

Prospects for multiplicity-dependent studies of $K^*(892)^{\pm}$ production in pp collisions at $\sqrt{s} = 13$ TeV with ALICE

Daniele Pistone, on behalf of the ALICE collaboration
Università degli Studi di Messina
INFN sezione di Catania

Introduction

Due to the rescattering, resonances may not be reconstructed

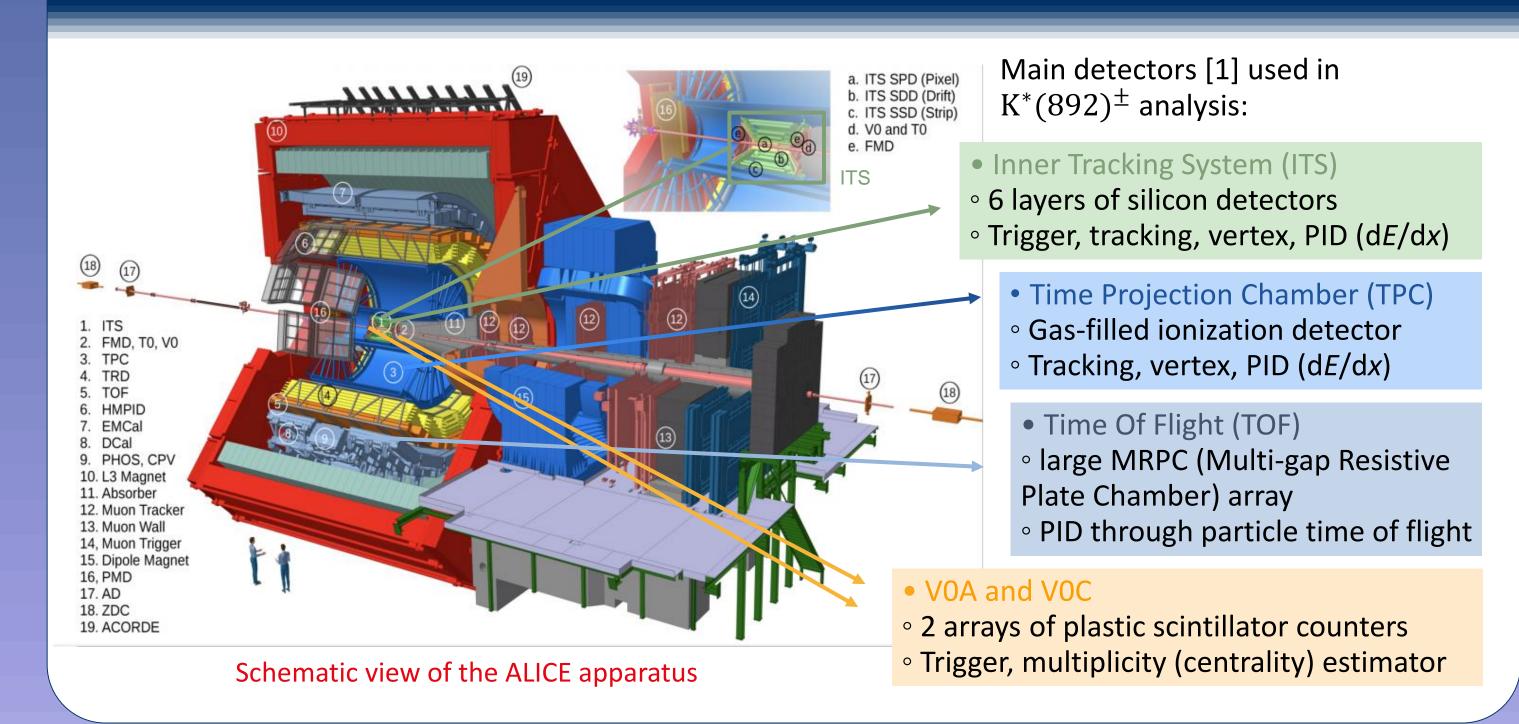
Rescattering

Resonances

Resonance lifetimes comparable with fireball

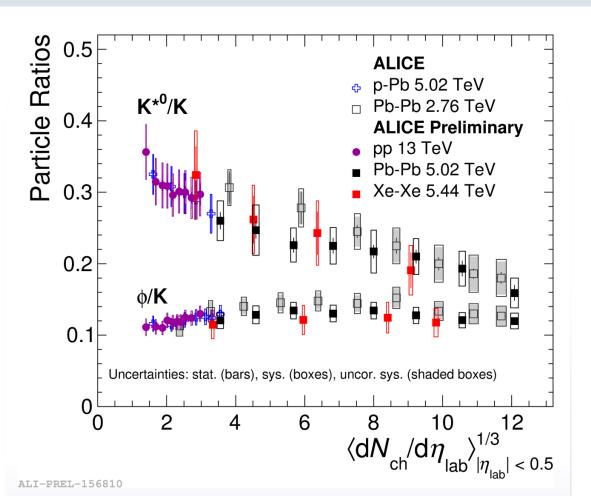
lifetime $\Delta \tau$ (about 10 fm/c at LHC energies)

Hadronic resonances reconstructed in ultra-relativistic heavy-ion collisions provide information on:


- Dynamical evolution and lifetime of the hadronic phase, highlighting resonance regeneration and re-scattering effects
- Strangeness production and processes that determine the shape of p_T spectra

Hadronic resonances measured in **proton-proton collisions**:

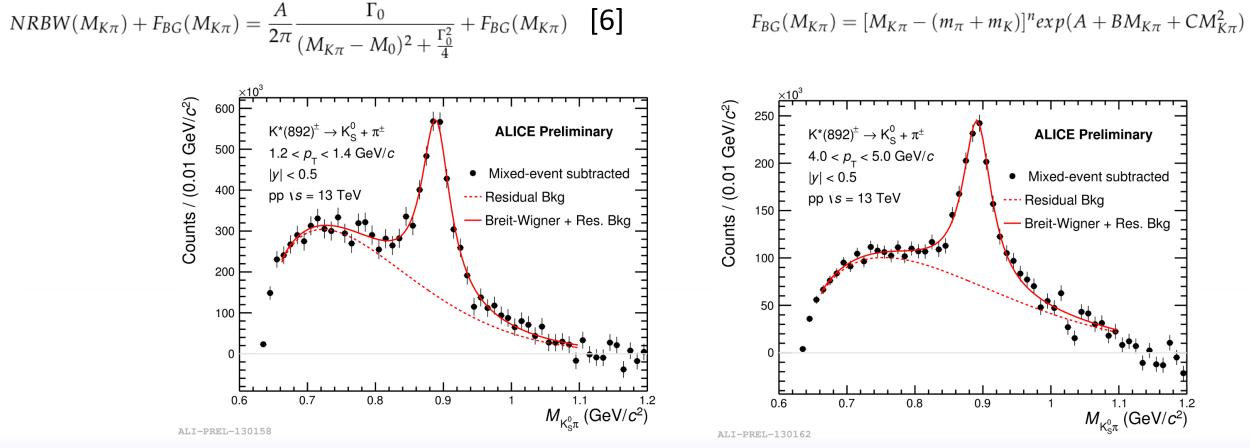
- Are used as a baseline for ion-ion collisions
- Studied as a function of multiplicity highlight possible onset of collective effects and/or features typical of heavy-ion collisions even in small systems


Resonance	ρ(770)0	Δ(1232)	K*(892) [±]	K*(892) ⁰	Σ(1385)±	Λ(1520)	Ξ(1530)0	ф(1020)
τ (fm/c)	1.3	1.7	3.6	4.2	5.0 - 5.5	12.6	21.7	46.4
Quark composition	$\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}$	uuu, uud, udd, ddd	us, ūs	$d\bar{s}$, $\bar{d}s$	uus, dds	uds	uss	SS
Decay BR (%)	ππ (100)	Nπ (99.4)	$K_{S}^{0}\pi$ (33.3)	Kπ (66.6)	Λπ (87)	pK (22.5)	Ξπ (66.7)	KK (48.9)

The ALICE detector at LHC

Resonance production in pp collisions as a function of multiplicity: motivation

- K^{*0}/K suppression in central heavy-ion collisions w.r.t. peripheral ones, p-Pb and pp collisions [2] \rightarrow suggests K^{*0} re-scattering dominance over regeneration in hadronic medium
- Similar **suppression** also for ho^0/π [3] and Λ (1520)/ Λ [4]
- ϕ/K no suppression: equilibrium between regeneration and re-scattering or no final-state effects at all because of longer ϕ life (manily decays outside the fireball)
- No suppression even for $\Sigma^{*\pm}/\Lambda$ [5], despite $\Sigma^{*\pm}$ short lifetime \rightarrow suppression is not just a lifetime effect
- K^{*0}/K decreasing trend for increasing multiplicity also in pp collisions and p-Pb collisions \rightarrow hint of possible presence of hadronic phase even for small system at (their) high multiplicities
- Independence of particle ratios from colliding systems and energies, dependence only on charged-particle multiplicity



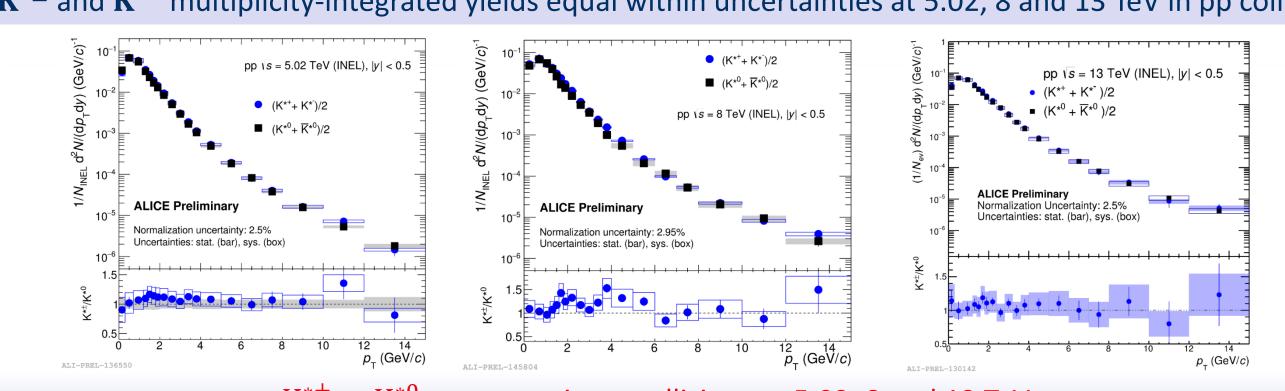
• K^{*0}/K and ϕ/K p_T -integrated yield ratios as a function of cubic root of charged-particle multiplicity at mid-rapidity (proxy for system size)

K*± resonance reconstruction

Resonances reconstructed via invariant mass distribution of their decay daughters

- $K^*(892)^{\pm}$ identified via: $K^{*\pm} \rightarrow \pi^{\pm} + K_S^0$ $\circ \pi^{\pm}$ detected, K_S^0 identified via $K_S^0 \rightarrow \pi^+ + \pi^-$
- Data Set: pp √s = 13 TeV
- Data: 415.52 M. evts; MC: PYTHIA 8 (Monash 2013 tune) 102.15 M. evts
- Event selection via minimum bias trigger; possibility of using high-multiplicity trigger
- Combinatorial background estimated via event mixing technique
- Signal + residual background fit with suitable functions: in this case Non-Relativistic Breit-Wigner + F_{BG} function
- \circ Modeling the residual background is the main source of systematic uncertainties and the limiting aspect of this analysis. F_{BG} function has proven to be a better choice than 2^{nd} and 3^{rd} order polynomials

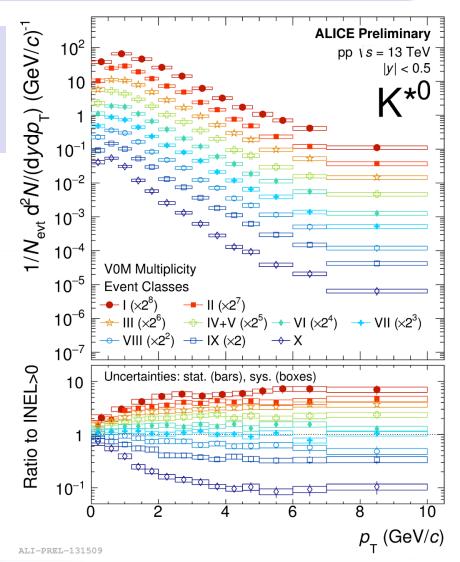
• K* $^{\pm}$ resonance reconstruction in pp collisions at 13 TeV in the 1.2 < $p_{\rm T}$ < 1.4 GeV/c and the 4.0 < $p_{\rm T}$ < 5.0 GeV/c bins


Energy dependence of

K*± production in pp collisions

♦ \sum_s = 13 TeV (Preliminary)

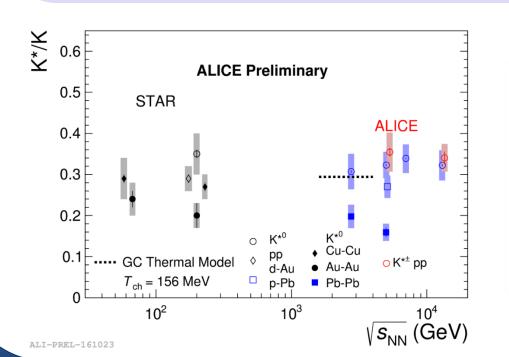
Motivation for studying K*(892)[±]


• $K^{*\pm}$ and K^{*0} multiplicity-integrated yields equal within uncertainties at 5.02, 8 and 13 TeV in pp collisions

• $K^{*\pm}$ vs K^{*0} p_T spectra in pp collisions at 5.02, 8 and 13 TeV

• Study of $K^{*\pm}$ as a function of multiplicity in pp collisions at 13 TeV is complementary to multiplicity dependent study of K^{*0} . Systematic uncertainties for the two measurements are largely uncorrelated.

- $K^{*\pm}$ analysis as a function of multiplicity in pp collisions at 13 TeV is currently in progress
 - K*0 p_T spectra and ratio to multiplicity-integrated yield in pp collisions at 13 TeV for different multiplicities
 - p_T spectra hardening with increasing multiplicity
 In small systems mechanism such as colour reconnection can mimic flow-like effects
 - Same spectral shape across multiplicity for $p_{\rm T} > 5~{\rm GeV}/c$ • suggests dominance at low $p_{\rm T}$ of processes that change the shape of $p_{\rm T}$ spectra


Summary

- Due to their lifetimes, comparable to the time scale of the collision, hadronic resonances have been shown to be **good probes of the late-stage evolution** of ultra-relativistic heavy-ion collisions
- Recent measurements of resonance production in high-multiplicity proton-proton and proton-lead collisions have shown the onset in small systems of phenomena typical of heavy ions
 In particular, there are hints of suppression of the K*(892)⁰/K ratio with increasing charged-particle
- multiplicity

 The study of $K^*(892)^{\pm}$ production can provide further evidence to confirm the observed trend

$p_{_{ m T}}$ (GeV/c) $p_{_{ m T}}$ (GeV/c)

- Independent of p_T up to ~ 1 GeV/ $c \rightarrow$ production mechanism at low momentum is independent of collision energy
- Increase in slope for $p_T > 1-2$ GeV/c; p_T spectra get harder with increasing collision energy Similar behaviour observed for other resonances and for stable hadrons (like reported π^{\pm})

ALICE, pp INEL, |y| < 0.5

K*/K yield ratios as a function of center-of-mass energy [2, 7, 8]

♦ \script s = 13 TeV (Preliminary)

 $p_{_{\rm T}}$ (GeV/c)

- Independent of collision energy and system, except for central nucleus—nucleus collisions, due to final state effects in the late hadronic stage
- Ratios in pp collisions consistent with thermal model estimations in the grand-canonical limit

References

- 1. ALICE Collab., JINST 3 (2008) S08002
- 2. ALICE Collab., Jins 1 3 (2008) 308002 2. ALICE Collab., Phys. Rev. C 95 (2017) 064606
- 3. ALICE Collab., Phys. Rev. C 95 (2017) 064606 6. P. Abreu et a 7. ALICE Collab.
- 4. ALICE Collab., Phys. Rev. C 99 (2019) 064901 7. ALICE Colla 4. ALICE Collab., Phys. Rev. C 99 (2019) 024905 8. ALICE Colla
- 5. STAR Collab., Phys. Rev. C 78 (2008) 0449066. P. Abreu et al, Z. Phys. C65 (1995) 587
- ALICE Collab., Phys. Rev. C 91 (2015) 024609
 ALICE Collab., Eur. Phys. J C76 (2016)