When Jet Quenching Meets Machine Learning

Lihan Liu¹, Marta Verweij²

- ¹ Vanderbilt University, Nashville TN, USA
- ² Utrecht University, Utrecht, Netherlands

Identification of Quenched Jets

In this poster I show how machine learning techniques can help to evaluate how quenched a jet is. To achieve this, a classifier was trained using the Long Short-term Memory (LSTM) model. Simulations were done with Monte Carlo event generators such as Pythia8 [1] and JEWEL [2] which simulates jets in vacuum and in medium respectively.

Feature Selection

Jets are recursively de-clustered into two subjets with Cambridge-Aachen (C/A) algorithm. The primary path, marked in red in Fig.2, follows the harder branch at each branching. Each node on the primary path contains a set of substructure variables which are used to train a classifier based on LSTM model.

Fig. 1 (Left): Jet substructure variables. Fig. 2 (Right): Jet binary tree representation. Harder branches are marked in red. Branches that can't pass soft drop condition are labeled as dotted lines.

Input vectors to the LSTM network $[x_0, x_1, ..., x_N]$ are taken from jet binary tree which come from recursive de-clustering. At step t, the feature vector x_t is a combination of substructure variables.

$$z = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}, \quad \Delta = \sqrt{(\varphi_1 - \varphi_2)^2 + (\eta_1 - \eta_2)^2}$$

$$k_{\perp} = p_{T,2} * \Delta, \qquad m = inv_mass(j_1, j_2)$$

Simulation & Training

 $\widehat{p_t}(\text{GeV})$

120

Pytorch [3]

Fig. 4: The distinguishing abilities of different classifiers compared with the help of ROC (Receiver Operating Characteristic) curves.

Jet De-clustering

C/A

< 30 Sec/Epoch

Label

No

Jewel ²	120	0.4	Anti-kt	C/A	1
Training	Learning Rate	LR decay (rate)	No. of Epochs	Loss Func	Batch Size
	0.005	Exponential (0.8)	10	BCE	100
Otlo a va	ML Framework	No. of Jets	Hyper-tuning	Training Time ²	GPU

Jet Clustering

Anti-kt

No

Jet Radius

0.4

15k + 12k

Classif	ier Input Features	Input Size	Hidden Size	No. Hidden Layers	No. of Parms ³
1	$[lnz, ln\Delta]$	2	2	5	240
2	$[lnz, ln\Delta, lnm]$	3	2	5	248
3	$[lnz, ln\Delta, lnk_{\perp}]$	3	2	5	248
4	$[lnz, ln\Delta, lnk_{\perp}, m]$	4	2	5	256

Table: Simulation and training details.

LSTM Model

Long short-term memory is an artificial recurrent neural network architecture and is capable of processing sequential data. This design makes it well-suited for making predictions on jets considering that the way of calculating substructure variables implies sequential information about how branching occurs. Recent study has shown successful implementation of a LSTM-based jet groomer [4].

Fig. 5: Recursive neural network (RNN) [5].

Fig. 6: LSTM cell [5].

Calculations that happen in a LSTM cell can be expressed as follows:

1. Forget gate: $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$ 2. Input gate: $i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$

 $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C$ $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$ 3. Update gate: 4. Output gate: $o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$

 $h_t = o_t * tanh(C_t)$

(W, b: learnable weights and biases.)

Substructure Variables

Jets with different predicted values populate the Lund radiation plane in different ways (Fig. 7). Substructure variables such as z, Δ and jet masses are compared (Fig. 8). Classifier no. 4 is used in making predictions.

Fig. 8: Distributions of z, Δ and the jet masses.

Jewel jets with smaller predicted values (lstm<0.8) show similarities to Pythia jets which can be observed from distributions of substructure variables (see Fig. 8).

Conclusion

This study has shown that the LSTM network can take jet substructure variables as input and develop its identification ability thus making it a practical approach to identify quenched jets.

It also shows that different feature selections may result in classifiers with different distinguishing abilities, as shown in Fig. 4.

Footnotes:

MC

Pythia8

Others

¹ It is configurable in Pytorch framework that the data loader can run with multi-threads.

² CPU: i7-6920HQ@2.90GHz. 4 out of 8 threads are used.

³ The total number of parameters scale with input size, output size and the number of hidden layers.

References:

[1] An Introduction to PYTHIA 8.2, arXiv:1410.3012.

[2] JEWEL 2.0.0 - Directions for Use, arXiv:1311.0048.

[3] Automatic differentiation in Pytorch. [4] Jet grooming through reinforcement learning, arXiv:1903.09644.

[5] Understanding LSTM Networks, colah's blog, https://colah.github.io/posts/2015-08-Understanding-LSTMs.