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ldentification of Quenched Jets LSTM Model

In this poster | show how machine learning techniques can help to evaluate how Long short-term memory is an artificial recurrent neural network architecture and
quenched a jet is. To achieve this, a classifier was trained using the Long Short-term Is capable of processing sequential data. This design makes it well-suited for
Memory (LSTM) model. Simulations were done with Monte Carlo event generators making predictions on jets considering that the way of calculating substructure
such as Pythia8 [1] and JEWEL [2] which simulates jets in vacuum and in medium variables implies sequential information about how branching occurs. Recent
respectively. study has shown successful implementation of a LSTM-based jet groomer [4].

¢
A A

Jets are recursively de-clustered into two subjets with Cambridge-Aachen (C/A)
6

algorithm. The primary path, marked in red in Fig.2, follows the harder branch at
each branching. Each node on the primary path contains a set of substructure
variables which are used to train a classifier based on LSTM model.
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Fig. 5: Recursive neural network (RNN) [5]. Fig. 6: LSTM cell [5].
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Fig. 1 (Left): Jet substructure variables. (W, b: learnable weights and biases.)

Fig. 2 (Right): Jet binary tree representation. Harder
branches are marked in red. Branches that can’t pass

soft drop condition are labeled as dotted lines. :
Substructure Variables

Input vectors to the LSTM network [x,, x4, ..., x5 ] are taken from jet binary tree which
come from recursive de-clustering. At step t, the feature vector x; is a combination

of substructure variables. Jets with different predicted values populate the Lund radiation plane in different

ways (Fig. 7). Substructure variables such as z, A and jet masses are compared

Z = ml;;ii;’::z} , A= /(@1 — ©2)2+(1M1 — 112)? (Fig. 8). Classifier no. 4 is used in making predictions.
k, =pra*A, m = inv_mass(jq, j2)

Simulation & Training
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Jewel jets with smaller predicted values (Istm<0.8) show similarities to Pythia jets
| | which can be observed from distributions of substructure variables (see Fig. 8).
Trainin Learning Rate LR decay (rate)  No. of Epochs Loss Func Batch Size
J 0.005 Exponential (0.8) 10 BCE 100
Others ML Framework No. of Jets Hyper-tuning Training Time? GPU
Pytorch [3] 15k + 12k No < 30 Sec/Epoch No Conclusion
Classifier Input Features Input Size Hidden Size No. Hidden Layers No. of Parms?
1 [inz, [nA] 2 2 5 240 This study has shown that the LSTM network can take jet substructure variables
2 linz, InA, Inm] 3 2 5 248 as input and develop its identification ability thus making it a practical approach
3 [Inz, InA, Ink ] 3 2 5 248 to identify quenched jets.
4 [Inz, InA, Ink |, m] 4 2 5 256 It also shows that different feature selections may result in classifiers with

different distinguishing abilities, as shown in Fig. 4.

Table: Simulation and training details.




