Introduction

> Control path-length of jet quenching with centrality and event plane angle

* Path-length dependence of medium modifications can be studied by
reconstructing jets relative to second-order harmonic event plane. Average
path length OUT > average path length IN.

Competing effects of associated hadrons
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Motivation: yield out of plane vary

Sensitive probe: differential jet shape

~Radial momentum distribution of the constituents
>Discriminate guenching models

>Discriminate guark v. gluon energy loss [1]

Event selection and jet reconstruction
: Au+Au @ Vs, = 200 GeV, mid-luminosity events, -28 <z, < 28 cm
» Anti-k_ jet algorithm with a resolution parameter R=0.4 ([2, 3]):
- Charged tracks with p. > 2 GeV/c
-~ Hadronically corrected BEMC towers with E_> 2.0 GeV
- High p_ constituent cut:

- Selects hard scatters and reduces fluctuations
> Obviates underlying event background subtraction
* “Leading jet”: the most energetic jet in each selected event is analyzed

Detector setup

The Solenoidal Tracker At RHIC (STAR)

* Time Projection Chamber (TPC): < Barrel Electromagnetic Calorimeter (BEMC):
—In|< 1.0, O<g<2rn lead-scintillator sampling calorimeter
—Tracking, momentum, dE/dx - In|< 1.0, O<qg<2m

- Resolution: 0.05x0.05

- Study high p. processes, triggering

Remove contribution from charged particles

Charged Neutral
A, | constituent | * | constituent

* High-tower trigger (at least one BEMC tower
with E_> 5.4 GeV) selects jetty events

Event plane reconstruction
- Reconstructed with charged tracks excluding p_2**°° ranges from 2

randomized sub-events (expected to be similar estimates of the event plane)
» Similar procedure as [4] - Modified Reaction Plane (MRP) method
» Improvement over traditional TPC and BBC methods

> Event plane resolution:
P Trigger jets labeled by following conditions:
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Fig. 1: Left: Event plane resolutions, shown for p_2*°° ranges, for the 2nd-order event plane.
Right: Cartoon depiction of in-, mid-, and out-of-plane regions relative to the event plane [5].

* Highest event plane resolution in 20-50% central region
» Gives maximal path length, on average, between in-plane and out-
of-plane due to the initial collision geometry
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Jet shape function, p(Ar)

- Radial annulus size: Ar = V[(n,,- n ) + (- )]
-Inner and outer radius: r_ =r—0r/2,r_ =1+ 0r/2

> Transverse momentum of track and Jet p., ptet

> Normalization of trigger jets, annulus size: N el

Background subtraction
* Uses mixed minimum bias (MB) events matched in centrality, event plane, z-vertex

Results

Fig. 2: Left: Signal+background and mixed event background differential (leading) jet shape distributions
for the 20-50% most central events. Right: Background subtracted differential (leading) jet shape as a
function of Ar. Shown are 20-40 GeV/c, R=0.4 full jets at all inclusive angles.
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> The differential jet shape at low-p_#***¢ (1.0-2.0 GeV/c) is dominated by background particles

> With increased associated transverse momenta, the jet shape changes from a relatively flat
distribution across Ar to a sharply falling distribution at high-p.

Event plane de endent differential jet shapes
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Unfolding methods on data
Unfold event plane dependent results to correct for

available event plane resolution. Uses a response matrix
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Fig. 3: Background subtracted differential (leading) event plane
jet shape as a function of Ar and compared for in- * R: event plane resolution
and out-of-plane jets from the 20-50% most central

events. - More low-p_. associated hadrons at large Ar for out-of-plane jets
relative to in-plane jets
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Summary
» Low-p_ (1.0-2.0 GeV/c) associated hadrons are dominated by background at Ar > 0.1

» High-p_ hadrons are located closer to jet core

> Below 2 GeV/c: event plane ordering: out > mid > in-plane
— out-of-plane jets have more low-p_ hadrons than in-plane jets

> Above 2 GeV/c: in-, mid-, and out-of-plane jet shape results are consistent with each other
> Jets with higher momentum are more collimated

Outlook

> Radial scan comparing the differential jet shape for various jet size, R

> Comparison of leading jet shape to that of inclusive and sub-leading jets

> Comparison of different centrality jet shapes to that of the baseline pp dataset
at Vs = 200 GeV
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