J/P as a function of charged-particle multiplicity in pp

collisions with ALICE at the LHC

Dhananjaya Thakur (for the ALICE Collaboration)
Indian Institute of Technology Indore, Indore, India

b \(3 :
i // \.\\\\
| Y FasHRar ||

1. Physics Motivation

Heavy-flavor vs. multiplicity
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ALICE, pp \s =7 TeV
¢ Average D°, D*, D*" meson |y|<0.5, 2<p_<4 GeV/c
¢ Jhy — e'e, |y|<0.9, pT>O
¢ Jy > pi, 25<y<4.0, p >0 |H

< Observable related to the underlying event accompanying heavy-flavour (HF) production
in pp collisions, helps in understanding the interplay between the soft and hard processes
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» Connection to Multiple Partonic Interactions (MPIs)

» Connection to final-state effects (color reconnection etc.) 0.7 ;

—_i
o

i

0.65

(d®N/d ydp.) / (*N/d ydp.)
o

J/U { p; ) vs. multiplicity 5 - B - Ny
| - 2 ! ]
= O o oS :
“* (p7 ) of charged particles as a function of multiplicity has been measured 0.55 fg& eppis=7TeV ]
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» An increasing trend for pp collisions 0.57 ]
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» Saturation towards higher multiplicity
for p—Pb and Pb—Pb collisions ( role of collectivity? )
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“* (p;) of J/W¥ vs. multiplicity in pp collisions could help us to understand mechanisms like
MPI, color-correlations, collectivity etc. for heavy flavors

B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 727 (2013) 371-380

J. Adam et al. [ALICE Collaboration], JHEP1509, 148 (2015)

2. A Large Ion Collider Experiment (ALICE) S. J/Y vyield as a function of charged-particle multiplicity

** The Inner Tracking System (ITS) is used for the measurement of charged particles

. . 5 i ' i iplici . ALCE Preliminary
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» Forward muon spectrometer is used to study quarkonium decaying to a muon (i.e. w/o rapidity gap between signal and Sagp L e :
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 Vertex measurement deviation from linear multiplicity scaling (almost CE g
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Muon Spectrometer “* Physics scenario: such as saturation would influence 33 14F 1) 162502 Tev :

O Consists of absorbers, dipole magnet, differently HF production at mid or forward rapidity 3| 12F = Inclusive Jiy - ', 25 <y <4

tracking system and trigger system. (Y. Q. Ma et al., Phys.Rev. D98, 074025(2018)) O pp. 15=13TeV, w25 <y <4 o

 Tracking system used to reconstruct 8F elnclusive J/y % ________________ 1

muon tracks, consists of 5 stations of i :E;i; | * ______ b i

cathode pad chambers. ¢ A linear increase of relative Y(1S) and Y(2S) yield as a ok et ]
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stations of RPC planes, used to function of relative charged-particle multiplicity is T
trigger single muons and dimuons observed W »

3. Multiplicity determination 6. J/Y (p;) as a function of charged-particle multiplicity

The charged-particle measurement is based on a SPD tracklets analysis (|n|<1). The
variation of the SPD efficiency with the z position of the primary vertex ( z . ey ) iS

¢ The extraction of the average transverse momentum of J/{ mesons is done via a fit to
the dimuon mean transverse momentum as a function of the invariant mass, {p;*+)

corrected using a data-driven method. (M)
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— <Ntrk> (Zv) “*(p;) of J/Y is increasing with multiplicity and
T saturates towards higher multiplicity : Presence of
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» The correction equalizes the number of tracklets as a function of z ., to the value AN, / dn
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** Comparison of pp with p—Pb collisions:
> The charged-particle density in the it multiplicity interval is calculated as: » For p—Pb: becomes flat beyond relative N~ 1.0 == Cold Nuclear Matter effect,
~OIT collectivity?
COrl
<chh/d77>i _ f(< trk >1>
<d‘ ‘Ch/dn> <dNCh/dn> INEL > 0 » For pp: The trend is similar to p—Pb up to N, ~ 1.0 and beyond, p—Pb saturates
> The measurement is performed for inelastic pp collisions with at least one charged faster than pp
particle in|n|<1 ( INEL >0)
» A similar behavior is also observed for light charged particles
» Here, The correlation function f is calculated using MC simulations (B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 727 (2013) 371-380 )
4. Signal extraction versus multiplicity for J/Y -->u* + w 7. Summary
The J/ are extracted by fitting the opposite sign dimuon invariant mass < Forward rapidity quarkonium yields vs. mid rapidity charged-particle multiplicity are
spectra in different multiplicity intervals. showing almost a linear increase, irrespective of collision energy
; ey AUCE Performancel £ [ e AUIGE Performance Sources of systematic uncertainty “» J/Y production at forward rapidity is approximately linear as a function of mid-rapidity
e, | B o o . : : : multiplicity, while a faster than linear increase is observed for J/{ measured at mid-
10° 25<y <40 | 25<y <40 ¢ Choice of different signal/background it
lendf_=1.64 102E A xz/r:;==11.g4 Shapes rapl ! y
10°F s Fit ranges
: 10¢ < Different sets of tail parameters ** Multiplicity dependent quarkonia production is independent of quark content i.e same for
e s J/Y and Y
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“* The J/Y (p;) vs. multiplicity shows a saturation for increasing multiplicities which may be a
sign for phenomena like MPI, color reconnection, collectivity

Example of J/Y signal extraction in low and high multiplicity intervals.
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