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Plan

Going 3D
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Why 3D?

The world is 3D!

Midrapidity observables are exhaustively studied

Average observables – The same

Transverse fluctuations – The same

A lot of important physics in longitudinal dynamics (e.g. JIMWLK evolution) and
correlations

Understanding the whole picture
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Before the collision (2D)

Single nucleus McLerran-Venugopalana picture

Large x partons ≈ Lorentz contracted colour
source on the light cone t = ±z

Small x partons ≈ Classical gluon field

Most of multiplicity is in the soft gluon field
==> Becomes the QGP medium

Gluon field scale: Qs ∼ A1/6ΛQCD
√

sλ/2 for λ� 1

McLerran & Venugopalan, PRD49 (1994) 2233, PRD49 (1994) 3352, PRD50 (1994) 2225
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2D Glasma

x+x−

Glasma

Projectile Target

t >|z|

A  = A A  = A1 2proj targ

t

z

η
In the forward light-cone region:

[Dµ,Gµν ] = 0

Initial conditions at τ = 0+

Ai = A1
i +A2

i

Eη = ig[A1
i ,A2

i ]

E i = 0, Bi = 0, Aη = 0

Boost-invariant ==> Relevant mostly for the
mid-rapidity dynamics

Dumitru & McLerran, NPA700 (2002) 492, Schenke, Tribedy & Venugpalan, PRL108 (2012) 252301 (2012),

Gale, Jeon, Schenke, Tribedy & Venugopalan, PRL110 (2013) 012302,

McDonald, Shen, Fillion-Gourdeau, Jeon & Gale, PRC95 (2017) 064913
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Going 3D
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What we need

Retain the good features of the 2D IP-Glasma model

Add the rapidity direction

3 different rapidities
Space-time rapidity: η = tanh−1(z/t) : This is what we need
Kinematic rapidity: y = tanh−1(pz/Ep) : JIMWLK evolution is in y

Pseudo-rapidity: ηs = tanh−1(pz/|p|) : Massless particles
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Initial condition: Idea

η > 0

JIMWLK: How the gluon field
appears in a moving frame

Finite η 6= 0 ==> Moving frame with
vz = tanh η

In this frame, the projectile has
γp = cosh(ybeam − η) and the target
has γt = cosh(ybeam + η)

The target appears much denser
than the projectile (for η > 0)

This idea originally by Schenke and Schlichting, Phys. Rev. C 94, 044907 (2016). The JIMWLK solution

by Lappi and Mäntysaari, NPA932 (2014) 69. CGC & JIMWLK: Work by Iancu, Jalilian-Marian, Kovner,

Leonidov, McLerran, Venugopalan, Weigert, and many others.
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The 3D Initial conditions

Stay as close to the 2D initial conditions as possible

Energy deposition only when there is overlap

Evolution by [Dµ,Gµν ] = 0

2D Initial conditions
A1,2

i = (i/g)V1,2∂iV
†
1,2

A1,2
η = 0

Ai = A1
i +A2

i

Aη = 0

Eη = ig[A1
i ,A2

i ]

E i = 0

3D Initial conditions
A1,2

i = (i/g)V1,2∂iV
†
1,2

A1,2
η = (i/g)V1,2∂ηV

†
1,2

Ai = A1
i +A2

i

Aη = A1
η +A2

η

Eη = ig[A1
i ,A2

i ]

[Dη, Eη] + [Di , E i ] = 0
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3D-Glasma Results
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A bit of technical detail

New implementation of 3D SU(3) real-time CYM in τ, η,x⊥

Fully in-house code

Running coupling JIMWLK following Lappi and Mäntysaari

Initial y for JIMWLK: ±4.25

Hydro: MUSIC in 3+1D mode with full initial Tµν

Hadronic afterburner: UrQMD

Preliminary: Going 3D also means two orders of magnitude more compute time...
More statistics coming soon (S. McDonald’s thesis work)
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Energy density evolution

√
sNN = 2.76 TeV

This is within the “plateau”

Right after the collision

1/τ in the transverse part
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Energy density evolution

√
sNN = 2.76 TeV

This is within the “plateau”

τ = 0.6 fm: Energy density reasonable for hydro

Decorrelation visible
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New Results – Transverse dynamics
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Similar level of description as 2D IP-Glasma results
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New Results – Transverse dynamics
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New Results – Longitudinal dynamics

Global longitudinal dynamics is being
well captured

Initial hydro condition beyond y = ±4.25: Smooth fall-off
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New Results – Longitudinal dynamics
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Global longitudinal dynamics is being well captured
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New Results – εn decorrelation
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ε2 decorrelation: Decreases as
the system becomes more
geometry driven

ε3 decorrelation: Does not
change much as they are mostly
fluctuation driven
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New Results – Longitudinal dynamics

0.8

0.9

1.0
r 2

(
a,

b)

0-0.2%

PRELIMINARY

0-5%
Initial State b = 3.5
Final State b = 3.5

5-10% 10-20% 20-30%

0.0 1.0 2.0 3.0
a

0.8

0.9

1.0

r 3
(

a,
b)

0-0.2%
CMS data 3.0 < b = 3.5
CMS data 4.4 < b < 5.0

0.0 1.0 2.0 3.0
a

0-5%

0.0 1.0 2.0 3.0
a

5-10%

0.0 1.0 2.0 3.0
a

10-20%

0.0 1.0 2.0 3.0
a

20-30%

Note: Correlation measured from η = 3.5
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Summary & Perspectives

Saturation physics provides good picture of initial interactions

Going 3D is non-trivial but doable

3D IP-Glasma Phenomenology – First time

A lot of physics to learn: Saturation physics, JIMWLK, . . .

Thermal fluctuations to be included (Mayank Singh)

Simulated events are being accumulated
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Backup Slides
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Before the collision (2D)

t < 0

targ

t = z t = −zt > z t > −z

Aproj A

Two nuclei approach each other accompanied by trailing gluon fields
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After the collision (2D)

targAprojτ = 0 A τ = 0+

Aproj targ

t = −z t = z

t > 0

Glasma

A

Middle: Glasma - Result of interaction between Aproj and Atarg

Boundary condition: Ai = Aproj
i + Atarg

i and Eη = ig[Aproj
i ,Atarg

i ]
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2D IP-Glasma has been successful

[Phys. Rev. C 95, 064913 (2017), McDonald, Shen, Fillion-Gourdeau, Jeon, Gale]
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Centrality selections
done by generating
sample min-bias events
and binning them –
Turned out to be crucial

Shear viscosity fixed by
fitting the integrated v2
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2D IP-Glasma has been successful

[Phys. Rev. C 95, 064913 (2017), McDonald, Shen, Fillion-Gourdeau, Jeon, Gale]
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Going 3D – Early attempts

[Phys.Lett.B424:15-24,1998, McLerran & Venugopalan]
MV’s definition of space-time rapidity

η = ηR + ln(x−R /x
−)

with x−R =
√

2R/γ. The Gauss law

[Di ,G i+] = gρ(x−,x⊥) becomes [Di , ∂ηAi ] = gρ(η,x⊥)

with ρ(η,x⊥) = x−ρ(x−,x⊥)

Color fluctuation scale per unit rapidity: Color sources exist only at high rapidity

C ηR η
µ2( η ,      )Q 2

η
R

exp(      −     )
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JIMWLK sources

[Phys.Rev.D78:054019,2008, Gelis, Lappi, Venugopalan.

Also see Annals of Physics 340, No. 1, 119-170, S. Jeon]

The classical JIMWLK color sources are
spatially located at or below x− = ε.

The origin of the JIMWLK evolution:
Vacuum fluctuations

Trade the gluon propagator 〈aa〉 with
the equivalent source correlator G〈ρρ〉G

Is there any real color source at η?
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Finding the 3D Initial conditions

Energy Density when A
η
 = 0 in 3D

overlap region
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y
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fm
]

x [fm]
Nucleons from Target Nucleons from Projectile

If 2D conditions are used at
each η without modification,

Giη = (i/g)[Di ,Dη] 6= 0

even when there is no overlap

This is because ∂ηAi 6= 0

Leads to energy deposites
where there shouldn’t be
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Finding the 3D Initial conditions

Energy Density when Aη =(i/g)V∂ηV
✝
 in 3D
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Need: A1,2
η = (i/g)V1,2∂ηV

†
1,2

and Aη = A1
η +A2

η so that
Giη = 0

Eη = 0 when no overlap
==> [Dη, Eη] + [Di , E i ] = 0
forces E i = 0

Energy deposites only in the
overlap region
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Rapidity Dependence

Comes from JIMWLK

Vx⊥(y + dy) = exp

(
−i

√
dy
π

∫
z⊥

√
αS Kx⊥−z⊥ · ξ̃z⊥

)

× Vx⊥(y) exp

(
i

√
dy
π

∫
z⊥

√
αS Kx⊥−z⊥ ·

(
V †z⊥ ξ̃z⊥Vz⊥

))
with

〈ξ̃a,i
x⊥ ξ̃

b,j
y⊥〉 = δabδijδ(x⊥ − y⊥)

Running coupling:

αS(k⊥) =
4π

β ln

[((
µ2

0
Λ2

QCD

)1/c

+

(
k2
⊥

Λ2
QCD

)1/c
)c]
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Field Evolution (S. McDonald, Last QM)
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Note the scale – 3D initial energy is much higher

This is because E =

∫
dηd2x⊥ τ

(
1
2

(
(Eη)2 + (Bη)2

)
+

1
2τ2

(
E2
⊥ + B2

⊥

))
In 3D, one cannot set E⊥ = 0 and B⊥ = 0
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Pressure Evolution (S. McDonald, Last QM)
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In 2D, PL = εη and PL = −εη at τ0

In 3D, PL ≈ εx + εy and PL ≈ εx − εy at τ0

Note the crossing at the isotropic point PT = PL = 1/3

Large τ behaviours are similar
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vn distributions with 3D IP-Glasma
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Initial conditions in other approaches

Phys. Rev. D 74, 045011 (2006), Romatschke and Venugopalan: 2D initial condition
plus η dependent factorized random noise

Phys. Rev. Lett. 111, 232301 (2013), Epelbaum and Gelis: 2D initial condition plus
random initial field for the quantum fluctuations

Phys. Rev. C 89, 034902 (2014), Ozonder and Fries based on Lam and Mahlon:
2D-like initial condition with boosted Coulomb field for η dependence

Phys. Rev. D 94, 014020 (2016), Gelfand, Ipp and Müller: 2D MV model performed
in (t , z). The sources move with v = ±c

Phys. Rev. C 94, 044907 (2016), Schenke and Schlichting: 2D initial conditions & 2D
evolution for each η slice

Jeon (McGill) 3D IP-Glasma 33 / 20


	Appendix

