First experimental test of HAL QCD lattice calculations for the multi strange hyperon-nucleon interaction with ALICE

Dimitar Mihaylov for the ALICE collaboration at QM 2019
6th November 2019, Wuhan, China
Overview

The goal

Study the interaction between a proton and multi-strange baryons $\Xi^-(ssd)\Omega^-(sss)$
A fundamental problem in hadron physics (e.g. relevant for the nuclear equation of state)

The theory

- **Lattice QCD potentials** (HAL-QCD Collaboration)
 - $p-\Xi^-$: predicted attractive interaction
 -> Consequences for the possible appearance in neutron stars
 - $p-\Omega^-$: predicted very attractive interaction
 -> Opens the door for a $N\Omega$ di-baryon

The experimental knowledge

- $p-\Xi^-$: hypernuclei (Kiso event) K. Nakazawa et al. PTEP 2015, 033D02
Femtoscopy @ ALICE

The very good PID capabilities of the detector result in very pure samples!

- Data set:
 \textbf{pp 13 TeV (1000 M high multipl. events)}
- Direct detection of charged particles (protons, kaons, pions)
- Reconstruction of hyperons:
 \[\Xi^- \rightarrow \Lambda \pi^- \rightarrow p\pi^- \pi^- \]
 \[\Omega^- \rightarrow \Lambda K^- \rightarrow p\pi^- K^- \]

The very good PID capabilities of the detector result in very pure samples!

- The purity of the protons is > 99%
- The purity of Ξ^- is 92%
- The purity of Ω^- is 75%

\textit{Scheme based on Int.J.Mod.Phys. A29 (2014) 1430044}
Femtoscopy
Overview

Source function $S(\vec{r})$

Measure the correlation function $C(k^*)$

$\Psi(\vec{k}, \vec{r})$

two particle wave function
Femtoscopy
Overview

Source function $S(\vec{r})$

Measure the correlation function $C(k^*)$

two particle wave function

Statistical definition

$$C(k^*) = \frac{\mathcal{P}(\vec{p}_a, \vec{p}_b)}{\mathcal{P}(\vec{p}_a)\mathcal{P}(\vec{p}_b)} = N \frac{N_{\text{Same}}(k^*)}{N_{\text{Mixed}}(k^*)} = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 \, d^3r \xrightarrow{k^* \to \infty} 1$$

Experimental definition

Relative distance / reduced momentum in the rest frame of the pair

Theoretical definition

Single-particle momenta

- Modelling/fitting performed using CATS

Femtoscopy Overview

Small collision systems (pp) probe the “inner” part of the interaction. Assumption: The source is similar for all produced baryons.

\[C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r} \xrightarrow{k^* \to \infty} 1 \]

Measure the correlation function \(C(k^*) \)

\(\Psi(\vec{k}, \vec{r}) \)

two particle wave function

Relative distance / reduced momentum in the rest frame of the pair

Further details in the talk of Prof. Laura Fabbietti

- Modelling/fitting performed using CATS

Fixing the source

From \(p-p \) correlations

- The effects of **short-lived resonances** are modeled by assuming a “core” Gaussian source, from which resonances and primordial particles are emitted.

- The resonances are added to the “core”

- Fix the value of \(r_{\text{core}} \) of each particle species based on their \(<m_T> \)

\[
\begin{align*}
\text{p-}\Xi^-: & \quad r_{\text{core}} = 0.80 \pm 0.03 \text{ fm} \\
& \quad r_{\text{eff}} = 0.92 \text{ fm (Gaussian)} \\
\text{p-}\Omega^-: & \quad r_{\text{core}} = 0.73 \pm 0.05 \text{ fm} \\
& \quad r_{\text{eff}} = 0.85 \text{ fm (Gaussian)}
\end{align*}
\]
N-Ξ^- interaction

<table>
<thead>
<tr>
<th></th>
<th>$l=0$</th>
<th>$l=1$</th>
<th>Detectable</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n-\Xi^-$</td>
<td>✗</td>
<td>✓</td>
<td>No</td>
</tr>
<tr>
<td>$p-\Xi^0$</td>
<td>✗</td>
<td>✓</td>
<td>Difficult</td>
</tr>
<tr>
<td>$p-\Xi^-$</td>
<td>✓</td>
<td>✓</td>
<td>Yes</td>
</tr>
</tbody>
</table>
N-Ξ^- interaction

<table>
<thead>
<tr>
<th></th>
<th>$I=0$</th>
<th>$I=1$</th>
<th>Detectable</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n-$-Ξ^-</td>
<td>✗</td>
<td>✓</td>
<td>No</td>
</tr>
<tr>
<td>$p-$-Ξ^0</td>
<td>✗</td>
<td>✓</td>
<td>Difficult</td>
</tr>
<tr>
<td>$p-$-Ξ^-</td>
<td>✓</td>
<td>✓</td>
<td>Yes</td>
</tr>
</tbody>
</table>
N-Ξ^- interaction

- Null Hypothesis: Coulomb only
- HAL QCD Potential
- NEW: Potential by Nijmegen group

<table>
<thead>
<tr>
<th></th>
<th>I=0</th>
<th>I=1</th>
<th>Detectable</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Ξ^-</td>
<td>✗</td>
<td>✓</td>
<td>No</td>
</tr>
<tr>
<td>p-Ξ^0</td>
<td>✗</td>
<td>✓</td>
<td>Difficult</td>
</tr>
<tr>
<td>p-Ξ^-</td>
<td>✓</td>
<td>✓</td>
<td>Yes</td>
</tr>
</tbody>
</table>

HAL-QCD: *AIP Conf.Proc. 2130 (2019) no.1, 020002*
ESC16: *Phys. Rev. C 99, 044003*
Results for p-Ξ⁻

Published results for p-Pb collisions

“First Observation of an Attractive Interaction between a Proton and a Cascade Baryon”
Results for $p-\Xi^-$

Published results for p-Pb collisions

“First Observation of an Attractive Interaction between a Proton and a Cascade Baryon”

- An enhanced statistical significance of the agreement with Lattice calculations*
- The ESC 16 is excluded => important for hypernuclei studies

Results for $p-\Xi^-$

$p-\Xi^-$ potential in pure neutron matter

In medium: Many body interaction, average Ξ^- Single particle potential (U_{Ξ})

Lattice QCD:
Prediction for repulsive $U_{\Xi^+} \sim 6$ MeV in pure neutron matter
\Rightarrow The existence of Ξ^- in neutron stars is disfavored.

- An enhanced statistical significance of the agreement with Lattice calculations*
- The ESC 16 is excluded \Rightarrow important for hypernuclei studies

Models for the $p-\Omega^-$ interaction

- **Lattice HAL-QCD** potential with **physical quark masses** (5S_2 channel)
 - $m_\pi = 146$ MeV/c^2
 - $m_K = 525$ MeV/c^2

- **Sekihara**: Meson-exchange model (5S_2 channel)
 - Short range attractive interaction fitted to previous HAL-QCD scattering parameters

Model Comparison

<table>
<thead>
<tr>
<th>Model</th>
<th>$p\Omega^-$ binding energy (strong interaction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAL-QCD</td>
<td>1.54 MeV</td>
</tr>
<tr>
<td>Sekihara</td>
<td>0.1 MeV</td>
</tr>
<tr>
<td></td>
<td>+1 MeV with Coulomb</td>
</tr>
</tbody>
</table>

→ Models provide so far only 5S_2 channel (weight %)

Results for p-Ω⁻

- “Coulomb only” scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction
- More attractive than p-Ξ⁻
Results for $p-\Omega^-$

- “Coulomb only” scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction
- More attractive than $p-\Xi^-$
- Large uncertainties on the theory due to the 3S_1 channel
- Precision of ALICE data exceeds the theoretical predictions

$p-\Omega^-$: $r_{\text{core}} = 0.73 \pm 0.05$ fm
$r_{\text{eff}} = 0.85$ fm (Gaussian)
Summary and outlook

- ALICE delivers the first **precise data** to test $p-\bar{\Xi}$ and $p-\bar{\Omega}$ interaction
- Both system show an **attractive** nature of the strong interaction
- $p-\bar{\Xi}$ is well described by lattice computations, which are compatible with **stiffer equation of state**
- $p-\bar{\Omega}$ is **not compatible** with a large binding energy
- $p-\bar{\Omega}$ is very **sensitive** to the **source** size
 Important to study different collision systems

- Improve the systematic uncertainties
- Study the $p-\bar{\Omega}$ correlation for different collision systems (source sizes), e.g. p-Pb
- Study $p-\Xi^+$
- Run 3/4 will provide even higher statistics:
 Achieve higher precision
 Study additional isospin systems such as $p-\Xi^0$
 Possibly access Ω-Ω correlation
Thank you for your attention!
感謝諸位的時間
Femtoscopy

Decomposition of $C(k^*)$

- Determine the amount of impurities and secondaries based on a data-driven MC study as done in *Phys.Rev. C99 (2019) no.2, 024001*

\[
C_{tot}(k^*) = \lambda_0 C_0 \oplus \lambda_1 C_1 \oplus \lambda_2 C_2 + \ldots
\]

Correlation of interest

Contributions from impurities, secondaries etc.

- Purity (P) from fits to the invariant mass distribution or MC data
- Feed-down fractions (f) from MC template fits
- $\lambda_i = P_{i_1} f_{i_1} P_{i_2} f_{i_2}$, where $i_{1,2}$ denote the two particles of the i-th contribution
Reconstruction of Ξ^- and Ω^-

Data: **pp collisions** at $\sqrt{s} = 13$ TeV

- Analyzed 10^9 events
- **High multiplicity** trigger

9.3\times106 Ξ^-⊕Ξ^+ selected candidates

- identified by $\Xi \rightarrow \Lambda \pi \rightarrow (p\pi)\pi$
- **Purity** 92%.
- 3\times104 p-Ξ^-⊕p-Ξ^+ pairs at $k^*<$200 MeV/c

1.2\times106 Ω^-⊕Ω^+ selected candidates

- identified by $\Omega \rightarrow \Lambda K \rightarrow (p\pi)K$.
- **Purity** 75%.
- 0.6\times106 p-Ω^-⊕p-Ω^+ pairs (700 at $k^*<$100 MeV/c)
Reconstruction of Ξ^- and Ω^-

Data: **pp collisions** at $\sqrt{s} = 13$ TeV
- Analyzed 10^9 events
- **High multiplicity** trigger

$9.3 \times 10^6 \Xi^- \oplus \Xi^+$ selected candidates
- identified by $\Xi \rightarrow \Lambda \pi \rightarrow (p \pi) \pi$
- **Purity 92%**.
- 3×10^4 p-$\Xi^- \oplus$ p-Ξ^+ pairs at $k^* < 200$ MeV/c

$1.2 \times 10^6 \Omega^- \oplus \Omega^+$ selected candidates
- identified by $\Omega \rightarrow \Lambda K \rightarrow (p \pi) K$.
- **Purity 75%**.
- 0.6×10^6 p-$\Omega^- \oplus$ p-Ω^+ pairs (700 at $k^* < 100$ MeV/c)

- sidebands analysis to describe the background under the signal peak
Implications for neutron stars with hyperon content

RMF models: EOS of neutron-rich matter with hyperon content

→ use single particle potential at saturation densities as input

\[U_{NN}(\rho_0), U_{\Lambda N}(\rho_0), U_{\Sigma N}(\rho_0), U_{\Xi N}(\rho_0) \]

-30 MeV

+30 MeV

variable →

Weissenborn et al., NPA881 (2012) 62-77
Implications for neutron stars with hyperon content

RMF models: EOS of neutron-rich matter with hyperon content

→ use single particle potential at saturation densities as input

\[U_{NN}(\rho_0), U_{\Lambda N}(\rho_0), U_{\Sigma N}(\rho_0), U_{\Xi N}(\rho_0) \]

-30 MeV +30 MeV variable →

Repulsive interaction

⇒ Production of \(\Xi \) pushed to higher densities
⇒ stiffer EoS, higher masses

Weissborn et al., NPA881 (2012) 62-77
Previous experimental data: STAR

- Observable: ratio of the correlation function peripheral/central collisions.
- Comparison with Lattice QCD calculations (with large masses)

- Test different fits to Lattice QCD data (delivering three different binding energies of the NΩ):

 Binding energy (E_b), scattering length (a_0) and effective range (r_{eff}) for the Spin-2 proton-Ω potentials [24].

<table>
<thead>
<tr>
<th>Spin-2 pΩ potentials</th>
<th>V_I</th>
<th>V_{II}</th>
<th>V_{III}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_b (MeV)</td>
<td>–</td>
<td>6.3</td>
<td>26.9</td>
</tr>
<tr>
<td>a_0 (fm)</td>
<td>-1.12</td>
<td>5.79</td>
<td>1.29</td>
</tr>
<tr>
<td>r_{eff} (fm)</td>
<td>1.16</td>
<td>0.96</td>
<td>0.65</td>
</tr>
</tbody>
</table>

STAR data favor V_{III}, with $E_b = 27 \text{ MeV}$
HAL-QCD potential with heavy quarks

- Based on Lattice calculations with heavy quark masses
 - $m_{\pi} = 875$ MeV/c^2
 - $m_K = 916$ MeV/c^2

- Used in the STAR $p\Omega$ analysis in Au-Au collisions at $\sqrt{s_{NN}} = 200$GeV

- Lattice calculations fitted by an attractive Gaussian core + an attractive tail, varying the range parameter at long distance (b_5)
 - V_{II}: best fit to Lattice calculations
 - V_I / V_{III}: weaker / stronger attraction

$$V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2})(e^{-b_5 r / r})^2$$

Binding energy (E_b), scattering length (a_0) and effective range (r_{eff}) for the Spin-2 proton-Ω potentials [24].

<table>
<thead>
<tr>
<th>Spin-2 $p\Omega$ potentials</th>
<th>V_I</th>
<th>V_{II}</th>
<th>V_{III}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_b (MeV)</td>
<td>-</td>
<td>6.3</td>
<td>26.9</td>
</tr>
<tr>
<td>a_0 (fm)</td>
<td>-1.12</td>
<td>5.79</td>
<td>1.29</td>
</tr>
<tr>
<td>r_{eff} (fm)</td>
<td>1.16</td>
<td>0.96</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Results for p-Ω⁻

Calculations provide the potential shape for the 5S_2 channel (weight $\frac{5}{6}$).

Currently, no model for the other channel in S-wave interaction, 3S_1 (weight $\frac{1}{6}$).
Requires coupled channel treatment.
Assume two different (~extreme) scenarios:

1.- Complete absorption for distances $r < r_0$.
 r_0 chosen from the condition $|V(^5S_2)| < |V(Coulomb)|$ for $r > r_0$

2.- Complete elastic with a similar attraction as 5S_2
Results for $p-\Omega^-$
Results for $p-\Omega^-$

“Coulomb only” scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction.

Precision of ALICE data exceeds the theoretical predictions.

\[r_{\text{core}} = 0.73 \pm 0.05 \text{ fm} \]

Comparison with the model favoured by STAR data:

\[V_{\text{III}} \]: Ad-hoc fit to previous HAL-QCD calculations with non-physical quark masses with $p\Omega$ dibaryon $E_b = 27 \text{ MeV}$.
Sensitivity of ALICE and STAR data

- Expected correlation function from heavy quark Lattice QCD potentials
- **Smaller radius** source offers the ideal conditions to test the models
- Better purity of ALICE data increases the sensitivity of the test

purity 75% (ALICE)
Sensitivity to the source size

Plot from the presentation of Prof. Akira Ohnishi during the FemTUM19 workshop

\(a_0 (pΩ) \sim 3.4 \text{ fm}, R(\text{ALICE}) \sim 0.7 \text{ fm}, R(\text{STAR}) \sim 3 \text{ fm} \)
Correlation function (5S_2) with distance cutoff

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses ($t=12$): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5$ fm
- For VI potential (no bound state) $C(k^*)$ always increases with decreasing r_{cutoff}
Fixing the source

From p-p correlations

- Effects of momentum resolution and feed-down contributions are applied to the fit function.

- The effects of short-lived resonances are modeled by assuming a “core” source, from which resonances and primordial particles are emitted.

\[r_{\text{core}} = 0.995 \pm 0.006^{+0.024}_{-0.022} \text{(syst.)} \text{ fm} \]
The source function

Effect of short-lived resonances

- Effects of **strong resonances** on the correlation function
 - **Introduction of an exponential tail** → non-gaussian contribution
 - **Resonances with** $c\tau \sim r_0 \sim 1$ fm
 - $N^* (\Gamma \sim 150 - 200 \text{ MeV})$
 - $\Delta (\Gamma \sim 150 \text{ MeV})$...

- The modification is **different** for the **distinct particle species**

- The momentum of the resonance computed based on the assumption of a 2-body decay into a final momentum of $k^*=0$

\[
s = \beta \gamma \tau_{\text{res}} = \frac{p_{\text{res}}}{M_{\text{res}}} \tau_{\text{res}}
\]

\[
E(r, M_{\text{res}}, \tau_{\text{res}}, p_{\text{res}}) = \frac{1}{s} \exp\left(-\frac{r}{s}\right)
\]
The source function

Effect of short-lived resonances

- For Ξ^- and Ω^- no contributions!
- Average mass and average τ determined by the weighted average values of all resonances

<table>
<thead>
<tr>
<th>Particle</th>
<th>M_{res} [MeV]</th>
<th>τ_{res} [fm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1361.52</td>
<td>1.65</td>
</tr>
<tr>
<td>Λ</td>
<td>1462.93</td>
<td>4.69</td>
</tr>
<tr>
<td>Σ^0</td>
<td>1581.73</td>
<td>4.28</td>
</tr>
</tbody>
</table>
Gaussian core + resonances

\[4\pi r^2 S(r) \text{ (1/fm)} \]

- \(p-p \langle m_T \rangle = 1.35 \text{ GeV/c}^2 \) \((R_{\alpha_{\text{eff}}} = 1.28 \text{ fm}) \)
- \(p-\Lambda \langle m_T \rangle = 1.55 \text{ GeV/c}^2 \) \((R_{\alpha_{\text{eff}}} = 1.30 \text{ fm}) \)
- \(p-\Sigma^0 \langle m_T \rangle = 2.07 \text{ GeV/c}^2 \) \((R_{\alpha_{\text{eff}}} = 1.12 \text{ fm}) \)
- \(p-\Xi^- \langle m_T \rangle = 1.85 \text{ GeV/c}^2 \) \((R_{\alpha_{\text{eff}}} = 0.92 \text{ fm}) \)
- \(p-\Omega^- \langle m_T \rangle = 2.17 \text{ GeV/c}^2 \) \((R_{\alpha_{\text{eff}}} = 0.85 \text{ fm}) \)
The source (based on $<m_T>$)

- Radius for **pure Gaussian** or **Gaussian core + Res.** taken from p-p $<m_T>$ scaling with the specific value of average m_T mass for each pair (see slides 11-12)
Effect on the source when smearing the resonances