First experimental test of HAL QCD lattice calculations for the multi strange hyperon-nucleon interaction with ALICE Dimitar Mihaylov for the ALICE collaboration at QM 2019 6th November 2019, Wuhan, China ### The goal Study the **interaction** between a **proton** and **multi-strange baryons** Ξ (ssd) Ω (sss) A fundamental problem in hadron physics (e.g. relevant for the nuclear equation of state) ### The theory - Lattice QCD potentials (HAL-QCD Collaboration) - p-=̄: predicted attractive interaction - → Consequences for the possible appearance in neutron stars - \circ $p-\Omega^-$: predicted very attractive interaction - \rightarrow Opens the door for a N Ω di-baryon ### The experimental knowledge - p-∃⁻: hypernuclei (Kiso event) <u>K. Nakazawa et al. PTEP 2015, 033D02</u> - p-Ω⁻: Femtoscopy by STAR in Au-Au collisions <u>STAR Collaboration. Phys. Lett. B790 (2019) 490-497</u> TOF ### Femtoscopy @ ALICE **TPC** - Data set: - pp 13 TeV (1000 M high multipl. events) - Direct detection of charged particles (protons, kaons, pions) - Reconstruction of hyperons: $$\Xi^- ightarrow \Lambda \pi^- ightarrow p \pi^- \pi^-$$ $$\Omega^- o \Lambda K^- o p \pi^- K^-$$ The very good PID capabilities of the detector result in very pure samples! - The purity of the protons is > 99% - The purity of Ξ^{-} is 92% - The purity of Ω^{-} is 75% the rest frame of the pair #### **Statistical definition** #### **Experimental definition** #### Theoretical definition $$C(k^*) = \frac{\mathcal{P}(\vec{p}_a, \vec{p}_b)}{\mathcal{P}(\vec{p}_a)\mathcal{P}(\vec{p}_b)} = \mathcal{N} \frac{N_{\text{Same}}(k^*)}{N_{\text{Mixed}}(k^*)} = \int S(\vec{r}) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3 \vec{r} \xrightarrow{k^* \to \infty} 1$$ Single-particle momenta Relative distance / reduced momentum in the rost frame of the pair Modelling/fitting performed using CATS Eur.Phys.J. C78 (2018) no.5, 394 Source function $S(\vec{r})$ Small collision systems (pp) probe the "inner" part of the interaction. Assumption: The source is similar for all produced baryons. Further details in the talk of Prof. Laura Fabbietti #### **Theoretical definition** $$\int S(\vec{r}) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3 \vec{r} \xrightarrow{k^* \to \infty} 1$$ Relative distance / reduced momentum in the rest frame of the pair Modelling/fitting performed using CATS Eur.Phys.J. C78 (2018) no.5, 394 ### Fixing the source ### From p-p correlations - The effects of short-lived resonances are modeled by assuming a "core" Gaussian source, from which resonances and primordial particles are emitted. - The resonances are added to the "core" - Fix the value of r_{core} of each particle species based on their $< m_{T} >$ $$p-\Xi^{-}$$: $r_{core} = 0.80 \pm 0.03 \text{ fm}$ $r_{eff} = 0.92 \text{ fm (Gaussian)}$ $$p-Ω^{-}$$: $r_{core} = 0.73 \pm 0.05$ fm $r_{eff} = 0.85$ fm (Gaussian) | | I=0 | I=1 | Detectable | |------------------|-----|-----|------------| | n-≣⁻ | × | ✓ | No | | p- ≡ º | × | ✓ | Difficult | | p-≣ ⁻ | 1 | 1 | Yes | | | I=0 | I=1 | Detectable | |--------------------------|-----|-----|------------| | n-∃⁻ | × | | No | | p- Ξ ⁰ | | | Difficult | | p-≣⁻ | 1 | 1 | Yes | ### N-∃⁻ interaction | | I=0 | I=1 | Detectable | |--------------------------|-----|-----|------------| | n-∃⁻ | × | | No | | p- Ξ ⁰ | | | Difficult | | p-≣ ⁻ | 1 | 1 | Yes | - HAL QCD Potential - NEW: Potential by Nijmegen group ### Results for p-∃ Published results for p-Pb collisions Phys. Rev. Lett. 123, 112002 (2019) "First Observation of an Attractive Interaction between a Proton and a Cascade Baryon" ### Results for p-∃ Published results for p-Pb collisions Phys. Rev. Lett. 123, 112002 (2019) "First Observation of an Attractive Interaction between a Proton and a Cascade Baryon" - An enhanced statistical significance of the agreement with Lattice calculations* - The ESC 16 is excluded => important for hypernuclei studies ### Results for p-∃ ### p-∃⁻ potential in pure neutron matter In medium: Many body interaction, average Ξ - Single particle potential (U_{Ξ} -) #### **Lattice QCD:** Prediction for **repulsive** $U_{\Xi^{-}}$ **6 MeV in pure neutron matter** => The existence of Ξ^{-} in neutron stars is disfavored. - An enhanced statistical significance of the agreement with Lattice calculations* - The ESC 16 is excluded => important for hypernuclei studies ### Models for the p- Ω - interaction - Lattice HAL-QCD potential with physical quark masses (5S2 channel) Phys.Lett. B792 (2019) 284-289 - $m_{\pi} = 146 \text{ MeV}/c^2$ $m_{\kappa} = 525 \text{ MeV}/c^2$ - Sekihara: Meson-exchange model (⁵S₂ channel) T. Sekihara et al., Phys. Rev. C 98, 015205 (2018) - Short range attractive interaction fitted to previous HAL-QCD scattering parameters | Model | pΩ ⁻ binding energy
(strong interaction only) | |----------|---| | HAL-QCD | 1.54 MeV | | Sekihara | 0.1 MeV | +1 MeV with Coulomb \rightarrow Models provide so far only 5S_2 channel (weight ${}^5\!\!$) - "Coulomb only" scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction - More attractive than p-∃⁻ ALI-DER-337400 - "Coulomb only" scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction - More attractive than p-∃⁻ - Large uncertainties on the theory due to the ³S₁ channel - Precision of ALICE data exceeds the theoretical predictions $$p-Ω$$: $r_{core} = 0.73 \pm 0.05$ fm $r_{eff} = 0.85$ fm (Gaussian) ALI-PREL-325875 ### Summary and outlook - ALICE delivers the first **precise data** to test $p-\Xi$ and $p-\Omega$ interaction - Both system show an attractive nature of the strong interaction - p-≡ is well described by lattice computations, which are compatible with stiffer equation of state - p-Ω is not compatible with a large binding energy - p-Ω is very sensitive to the source size Important to study different collision systems - Improve the systematic uncertainties - Study the p- Ω correlation for different collision systems (source sizes), e.g. p-Pb - Study p-\(\overline{\pi}\)⁺ - Run 3/4 will provide even higher statistics: Achieve higher precision Study additional isospin systems such as p-Ξ⁰ Possibly access Ω-Ω correlation ### Thank you for your attention! 感謝諸位的時間 # Femtoscopy Decomposition of C(k*) • Determine the amount of impurities and secondaries based on a data-driven MC study as done in Phys.Rev. C99 (2019) no.2, 024001 - Purity (\mathcal{P}) from fits to the invariant mass distribution or MC data - Feed-down fractions (f) from MC template fits - $\lambda_i = \mathcal{P}_{i_1} f_{i_1} \mathcal{P}_{i_2} f_{i_2}$, where $i_{1,2}$ denote the two particles of the i-th contribution ### Reconstruction of Ξ^{-} and Ω^{-} Data: **pp collisions** at \sqrt{s} = 13 TeV - Analyzed 10⁹ events - High multiplicity trigger 9.3×10⁶ **Ξ**⁻⊕**Ξ**⁺ selected candidates - identified by $\Xi \rightarrow \Lambda \pi \rightarrow (p\pi)\pi$ - Purity 92%. - $3 \times 10^4 \text{ p-}\Xi^- \text{ p-}\Xi^+ \text{ pairs at } k^* < 200 \text{ MeV/}c$ #### $1.2\times10^6 \Omega^{-\Phi}\Omega^{+}$ selected candidates - identified by $\Omega \rightarrow \Lambda K \rightarrow (p\pi)K$. - Purity 75%. - $0.6 \times 10^6 \text{ p-}\Omega^- \oplus \text{p-}\Omega^+ \text{ pairs } (700 \text{ at } k^* < 100 \text{ MeV}/c)$ LI-PREL-315635 ### Reconstruction of Ξ^{-} and Ω^{-} #### Data: **pp collisions** at \sqrt{s} = 13 TeV - Analyzed 10⁹ events - High multiplicity trigger #### 9.3×10⁶ ∃⁻⊕∃⁺ selected candidates - identified by $\Xi \rightarrow \Lambda \pi \rightarrow (p\pi)\pi$ - Purity 92%. - 3×10^4 p- $\Xi^-\oplus$ p- Ξ^+ pairs at $k^*<200$ MeV/c #### 1.2×10⁶ **Ω**⁻⊕**Ω**⁺ selected candidates - identified by $\Omega \rightarrow \Lambda K \rightarrow (p\pi)K$. - Purity 75%. - 0.6×10⁶ p-Ω⁻⊕p-Ω⁺ pairs (700 at k*<100 MeV/c) sidebands analysis to describe the background under the signal peak ### Implications for neutron stars with hyperon content RMF models: EOS of neutron-rich matter with hyperon content → use single particle potential at saturation densities as input $$U_{NN}(\rho_0), U_{\Lambda N}(\rho_0), U_{\Sigma N}(\rho_0), U_{\Xi N}(\rho_0)$$ +30 MeV $U_{NN}(\rho_0), U_{\Xi N}(\rho_0)$ ### Implications for neutron stars with hyperon content RMF models: EOS of neutron-rich matter with hyperon content → use single particle potential at saturation densities as input $$U_{NN}(\rho_0), U_{\Lambda N}(\rho_0), U_{\Sigma N}(\rho_0), U_{\Xi N}(\rho_0), U_{\Xi N}(\rho_0)$$ +30 MeV variable \rightarrow #### Repulsive interaction - \Rightarrow Production of Ξ pushed to higher densities - ⇒stiffer EoS, higher masses ### Previous experimental data: STAR - Study of the p- Ω^- correlation function in Au-Au collisions at $\sqrt{s_{NIN}}$ = 200GeV STAR Collaboration. Phys. Lett. B790 (2019) 490-497 - Observable: ratio of the correlation function peripheral/central collisions. - Comparison with Lattice QCD calculations (with large masses) #### Test different fits to Lattice QCD data (delivering three different binding energies of the $N\Omega$): Binding energy $(\mathbf{E_h})$, scattering length $(\mathbf{a_0})$ and effective range (\mathbf{r}_{eff}) for the Spin-2 proton- Ω potentials [24]. | | | | $\overline{}$ | |----------------------------------|-------|----------|------------------| | Spin-2 $p\Omega$ potentials | V_I | V_{II} | V _{III} | | E _b (MeV) | - | 6.3 | 26.9 | | a_0 (fm) | -1.12 | 5.79 | 1.29 | | $\mathbf{r}_{\mathbf{eff}}$ (fm) | 1.16 | 0.96 | 0.65 | | | | | $\overline{}$ | [24] K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94 (2016), 031901 STAR data favor V_{III} , with $E_h = 27 \text{ MeV}$ ### HAL-QCD potential with heavy quarks - Based on Lattice calculations with heavy quark masses F. Etminan et al.(HAL QCD Collaboration), Nucl. Phys. A928,89(2014) - $m_{\pi} = 875 \text{ MeV}/c^2$ - $m_{\kappa}^{"} = 916 \text{ MeV}/c^2$ - Used in the STAR p Ω analysis in Au-Au collisions at $\sqrt{s_{NN}}$ = 200GeV - Lattice calculations fitted by an attractive Gaussian core + an attractive tail, varying the range parameter at long distance (b_5) - **V**_{II}: best fit to Lattice calculations - V_I / V_{III}: weaker / stronger attraction $$V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2}) (e^{-b_5 r}/r)^2$$ Binding energy $(\mathbf{E_b})$, scattering length $(\mathbf{a_0})$ and effective range (\mathbf{r}_{eff}) for the Spin-2 proton- Ω potentials [24]. | Spin-2 p Ω potentials | V_I | V_{II} | V_{III} | |----------------------------------|-------|----------|-----------| | E _b (MeV) | _ | 6.3 | 26.9 | | $\mathbf{a_0}$ (fm) | -1.12 | 5.79 | 1.29 | | $\mathbf{r}_{\mathbf{eff}}$ (fm) | 1.16 | 0.96 | 0.65 | ## Results for p- Ω Calculations provide the potential shape for the 5S_2 channel (weight 5R_2). Currently, no model for the other channel in S-wave interaction, 3S_1 (weight ${}^3/_8$). Requires coupled channel treatment. Assume two different (~extreme) scenarios: - 1.- Complete absorption for distances $r < r_0$. $r_0 \text{ chosen from the condition } |V(^5S_2)| < |V(Coulomb)| \text{ for } r > r_0$ K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94 (2016), 031901 - 2.- Complete elastic with a similar attraction as ${}^5\mathrm{S}_2$ ### Results for p- Ω^{-} ### Results for p- Ω^{-} "Coulomb only" scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction Precision of ALICE data exceeds the theoretical predictions $$r_{core}$$ = 0.73 ± 0.05 fm (+ resonances) Comparison with the model favoured by STAR data: > V_{III}: Ad-hoc fit to previous HAL-QCD calculations with non-physical quark masses with p Ω dibaryon E_b = 27 MeV ALI-PREL-325870 ### Sensitivity of ALICE and STAR data - Expected correlation function from heavy quark Lattice QCD potentials - Smaller radius source offers the ideal conditions to test the models - Better purity of ALICE data increases the sensitivity of the test ### Sensitivity to the source size a_0 (p Ω)~ 3.4 fm, R(ALICE)~0.7 fm, R(STAR)~3 fm ### Correlation function (${}^{5}S_{2}$) with distance cutoff - Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$) - HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5 \text{ fm}$ - For VI potential (no bound state) $C(k^*)$ always increases with decreasing $r_{\rm cutoff}$ ### Fixing the source Effects of momentum resolution and feed-down contributions are applied to the fit function. The effects of short-lived resonances are modeled by assuming a "core" source, from which resonances and primordial particles are emitted. $r_{ m core} = 0.995 \pm 0.006 ({ m stat.})^{+0.024}_{-0.022} ({ m syst.}) \ { m fm}$ ### The source function # ALTCE ### Effect of short-lived resonances - Effects of strong resonances on the correlation function - Introduction of an exponential tail→ non-gaussian contribution - Resonances with cτ ~ r₀~ 1 fm N* ($$\Gamma$$ ~ 150 - 200 MeV) Δ (Γ ~ 150 MeV)... - The modification is different for the distinct particle species - The amount of resonances determined within a Statistical Hadronization Model in the canonical approach (Priv. Comm. With Prof. F. Becattini, see for details <u>J.Phys. G38 (2011) 025002</u>) - The momentum of the resonance computed based on the assumption of a 2-body decay into a final momentum of k*=0 $$s=eta\gamma au_{ m res} = rac{p_{ m res}}{M_{ m res}} au_{ m res}$$ $$E(r, M_{ m res}, au_{ m res}, p_{ m res}) = rac{1}{s} \exp(- rac{r}{s})$$ VS. ### The source function ### Effect of short-lived resonances - For Ξ^- and Ω^- no contributions! - Average mass and average cτ determined by the weighted average values of all resonances | Particle | $M_{\rm res}$ [MeV] | $ au_{ m res}$ [fm] | |------------|---------------------|---------------------| | p | 1361.52 | 1.65 | | Λ | 1462.93 | 4.69 | | Σ^0 | 1581.73 | 4.28 | ### Gaussian core + resonances ### The source (based on <mT>) Radius for pure Gaussian or Gaussian core + Res. taken from p-p <mT> scaling with the specific value of average m_{τ} mass for each pair (see slides 11-12) ### Effect on the source when smearing the resonances