

First experimental test of HAL QCD lattice calculations for the multi strange hyperon-nucleon interaction with ALICE

Dimitar Mihaylov for the ALICE collaboration at QM 2019 6th November 2019, Wuhan, China

The goal

Study the **interaction** between a **proton** and **multi-strange baryons** Ξ (ssd) Ω (sss) A fundamental problem in hadron physics (e.g. relevant for the nuclear equation of state)

The theory

- Lattice QCD potentials (HAL-QCD Collaboration)
 - p-=̄: predicted attractive interaction
 - → Consequences for the possible appearance in neutron stars
 - \circ $p-\Omega^-$: predicted very attractive interaction
 - \rightarrow Opens the door for a N Ω di-baryon

The experimental knowledge

- p-∃⁻: hypernuclei (Kiso event) <u>K. Nakazawa et al. PTEP 2015, 033D02</u>
- p-Ω⁻: Femtoscopy by STAR in Au-Au collisions <u>STAR Collaboration. Phys. Lett. B790 (2019) 490-497</u>

TOF

Femtoscopy @ ALICE

TPC

- Data set:
 - pp 13 TeV (1000 M high multipl. events)
- Direct detection of charged particles (protons, kaons, pions)
- Reconstruction of hyperons:

$$\Xi^-
ightarrow \Lambda \pi^-
ightarrow p \pi^- \pi^-$$

$$\Omega^- o \Lambda K^- o p \pi^- K^-$$

The very good PID capabilities of the detector result in very pure samples!

- The purity of the protons is > 99%
- The purity of Ξ^{-} is 92%
- The purity of Ω^{-} is 75%

the rest frame of the pair

Statistical definition

Experimental definition

Theoretical definition

$$C(k^*) = \frac{\mathcal{P}(\vec{p}_a, \vec{p}_b)}{\mathcal{P}(\vec{p}_a)\mathcal{P}(\vec{p}_b)} = \mathcal{N} \frac{N_{\text{Same}}(k^*)}{N_{\text{Mixed}}(k^*)} = \int S(\vec{r}) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3 \vec{r} \xrightarrow{k^* \to \infty} 1$$
Single-particle momenta

Relative distance / reduced momentum in the rost frame of the pair

Modelling/fitting performed using CATS Eur.Phys.J. C78 (2018) no.5, 394

Source function $S(\vec{r})$

Small collision systems (pp) probe the "inner" part of the interaction. Assumption: The source is similar for all produced baryons.

Further details in the talk of Prof. Laura Fabbietti

Theoretical definition

$$\int S(\vec{r}) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3 \vec{r} \xrightarrow{k^* \to \infty} 1$$

Relative distance / reduced momentum in the rest frame of the pair

Modelling/fitting performed using CATS Eur.Phys.J. C78 (2018) no.5, 394

Fixing the source

From p-p correlations

- The effects of short-lived resonances are modeled by assuming a "core" Gaussian source, from which resonances and primordial particles are emitted.
- The resonances are added to the "core"
- Fix the value of r_{core} of each particle species based on their $< m_{T} >$

$$p-\Xi^{-}$$
: $r_{core} = 0.80 \pm 0.03 \text{ fm}$
 $r_{eff} = 0.92 \text{ fm (Gaussian)}$

$$p-Ω^{-}$$
: $r_{core} = 0.73 \pm 0.05$ fm
 $r_{eff} = 0.85$ fm (Gaussian)

	I=0	I=1	Detectable
n-≣⁻	×	✓	No
p- ≡ º	×	✓	Difficult
p-≣ ⁻	1	1	Yes

	I=0	I=1	Detectable
n-∃⁻	×		No
p- Ξ ⁰			Difficult
p-≣⁻	1	1	Yes

N-∃⁻ interaction

	I=0	I=1	Detectable
n-∃⁻	×		No
p- Ξ ⁰			Difficult
p-≣ ⁻	1	1	Yes

- HAL QCD Potential
- NEW: Potential by Nijmegen group

Results for p-∃

Published results for p-Pb collisions Phys. Rev. Lett. 123, 112002 (2019)

"First Observation of an Attractive Interaction between a Proton and a Cascade Baryon"

Results for p-∃

Published results for p-Pb collisions Phys. Rev. Lett. 123, 112002 (2019)

"First Observation of an Attractive Interaction between a Proton and a Cascade Baryon"

- An enhanced statistical significance of the agreement with Lattice calculations*
- The ESC 16 is excluded => important for hypernuclei studies

Results for p-∃

p-∃⁻ potential in pure neutron matter

In medium: Many body interaction, average Ξ - Single particle potential (U_{Ξ} -)

Lattice QCD:

Prediction for **repulsive** $U_{\Xi^{-}}$ **6 MeV in pure neutron matter** => The existence of Ξ^{-} in neutron stars is disfavored.

- An enhanced statistical significance of the agreement with Lattice calculations*
- The ESC 16 is excluded => important for hypernuclei studies

Models for the p- Ω - interaction

- Lattice HAL-QCD potential with physical quark masses (5S2 channel) Phys.Lett. B792 (2019) 284-289

 - $m_{\pi} = 146 \text{ MeV}/c^2$ $m_{\kappa} = 525 \text{ MeV}/c^2$
- Sekihara: Meson-exchange model (⁵S₂ channel) T. Sekihara et al., Phys. Rev. C 98, 015205 (2018)
 - Short range attractive interaction fitted to previous HAL-QCD scattering parameters

Model	pΩ ⁻ binding energy (strong interaction only)
HAL-QCD	1.54 MeV
Sekihara	0.1 MeV

+1 MeV with Coulomb

 \rightarrow Models provide so far only 5S_2 channel (weight ${}^5\!\!$)

- "Coulomb only" scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction
- More attractive than p-∃⁻

ALI-DER-337400

- "Coulomb only" scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction
- More attractive than p-∃⁻
- Large uncertainties on the theory due to the ³S₁ channel
- Precision of ALICE data exceeds the theoretical predictions

$$p-Ω$$
: $r_{core} = 0.73 \pm 0.05$ fm
 $r_{eff} = 0.85$ fm (Gaussian)

ALI-PREL-325875

Summary and outlook

- ALICE delivers the first **precise data** to test $p-\Xi$ and $p-\Omega$ interaction
- Both system show an attractive nature of the strong interaction
- p-≡ is well described by lattice computations, which are compatible with stiffer equation of state
- p-Ω is not compatible with a large binding energy
- p-Ω is very sensitive to the source size Important to study different collision systems
- Improve the systematic uncertainties
- Study the p- Ω correlation for different collision systems (source sizes), e.g. p-Pb
- Study p-\(\overline{\pi}\)⁺
- Run 3/4 will provide even higher statistics:
 Achieve higher precision
 Study additional isospin systems such as p-Ξ⁰
 Possibly access Ω-Ω correlation

Thank you for your attention! 感謝諸位的時間

Femtoscopy Decomposition of C(k*)

• Determine the amount of impurities and secondaries based on a data-driven MC study as done in Phys.Rev. C99 (2019) no.2, 024001

- Purity (\mathcal{P}) from fits to the invariant mass distribution or MC data
- Feed-down fractions (f) from MC template fits
- $\lambda_i = \mathcal{P}_{i_1} f_{i_1} \mathcal{P}_{i_2} f_{i_2}$, where $i_{1,2}$ denote the two particles of the i-th contribution

Reconstruction of Ξ^{-} and Ω^{-}

Data: **pp collisions** at \sqrt{s} = 13 TeV

- Analyzed 10⁹ events
- High multiplicity trigger

9.3×10⁶ **Ξ**⁻⊕**Ξ**⁺ selected candidates

- identified by $\Xi \rightarrow \Lambda \pi \rightarrow (p\pi)\pi$
- Purity 92%.
- $3 \times 10^4 \text{ p-}\Xi^- \text{ p-}\Xi^+ \text{ pairs at } k^* < 200 \text{ MeV/}c$

$1.2\times10^6 \Omega^{-\Phi}\Omega^{+}$ selected candidates

- identified by $\Omega \rightarrow \Lambda K \rightarrow (p\pi)K$.
- Purity 75%.
- $0.6 \times 10^6 \text{ p-}\Omega^- \oplus \text{p-}\Omega^+ \text{ pairs } (700 \text{ at } k^* < 100 \text{ MeV}/c)$

LI-PREL-315635

Reconstruction of Ξ^{-} and Ω^{-}

Data: **pp collisions** at \sqrt{s} = 13 TeV

- Analyzed 10⁹ events
- High multiplicity trigger

9.3×10⁶ ∃⁻⊕∃⁺ selected candidates

- identified by $\Xi \rightarrow \Lambda \pi \rightarrow (p\pi)\pi$
- Purity 92%.
- 3×10^4 p- $\Xi^-\oplus$ p- Ξ^+ pairs at $k^*<200$ MeV/c

1.2×10⁶ **Ω**⁻⊕**Ω**⁺ selected candidates

- identified by $\Omega \rightarrow \Lambda K \rightarrow (p\pi)K$.
- Purity 75%.
- 0.6×10⁶ p-Ω⁻⊕p-Ω⁺ pairs (700 at k*<100 MeV/c)

 sidebands analysis to describe the background under the signal peak

Implications for neutron stars with hyperon content

RMF models: EOS of neutron-rich matter with hyperon content

→ use single particle potential at saturation densities as input

$$U_{NN}(\rho_0), U_{\Lambda N}(\rho_0), U_{\Sigma N}(\rho_0), U_{\Xi N}(\rho_0)$$
+30 MeV
 $U_{NN}(\rho_0), U_{\Xi N}(\rho_0)$

Implications for neutron stars with hyperon content

RMF models: EOS of neutron-rich matter with hyperon content

→ use single particle potential at saturation densities as input

$$U_{NN}(\rho_0), U_{\Lambda N}(\rho_0), U_{\Sigma N}(\rho_0), U_{\Xi N}(\rho_0), U_{\Xi N}(\rho_0)$$
+30 MeV variable \rightarrow

Repulsive interaction

- \Rightarrow Production of Ξ pushed to higher densities
- ⇒stiffer EoS, higher masses

Previous experimental data: STAR

- Study of the p- Ω^- correlation function in Au-Au collisions at $\sqrt{s_{NIN}}$ = 200GeV STAR Collaboration. Phys. Lett. B790 (2019) 490-497
- Observable: ratio of the correlation function peripheral/central collisions.
- Comparison with Lattice QCD calculations (with large masses)

Test different fits to Lattice QCD data (delivering three different binding energies of the $N\Omega$):

Binding energy $(\mathbf{E_h})$, scattering length $(\mathbf{a_0})$ and effective range (\mathbf{r}_{eff}) for the Spin-2 proton- Ω potentials [24].

			$\overline{}$
Spin-2 $p\Omega$ potentials	V_I	V_{II}	V _{III}
E _b (MeV)	-	6.3	26.9
a_0 (fm)	-1.12	5.79	1.29
$\mathbf{r}_{\mathbf{eff}}$ (fm)	1.16	0.96	0.65
			$\overline{}$

[24] K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94 (2016), 031901

STAR data favor V_{III} , with $E_h = 27 \text{ MeV}$

HAL-QCD potential with heavy quarks

- Based on Lattice calculations with heavy quark masses F. Etminan et al.(HAL QCD Collaboration), Nucl. Phys. A928,89(2014)
 - $m_{\pi} = 875 \text{ MeV}/c^2$
 - $m_{\kappa}^{"} = 916 \text{ MeV}/c^2$
- Used in the STAR p Ω analysis in Au-Au collisions at $\sqrt{s_{NN}}$ = 200GeV
- Lattice calculations fitted by an attractive Gaussian core + an attractive tail, varying the range parameter at long distance (b_5)
 - **V**_{II}: best fit to Lattice calculations
 - V_I / V_{III}: weaker / stronger attraction

$$V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2}) (e^{-b_5 r}/r)^2$$

Binding energy $(\mathbf{E_b})$, scattering length $(\mathbf{a_0})$ and effective range (\mathbf{r}_{eff}) for the Spin-2 proton- Ω potentials [24].

Spin-2 p Ω potentials	V_I	V_{II}	V_{III}
E _b (MeV)	_	6.3	26.9
$\mathbf{a_0}$ (fm)	-1.12	5.79	1.29
$\mathbf{r}_{\mathbf{eff}}$ (fm)	1.16	0.96	0.65

Results for p- Ω

Calculations provide the potential shape for the 5S_2 channel (weight 5R_2).

Currently, no model for the other channel in S-wave interaction, 3S_1 (weight ${}^3/_8$). Requires coupled channel treatment.

Assume two different (~extreme) scenarios:

- 1.- Complete absorption for distances $r < r_0$. $r_0 \text{ chosen from the condition } |V(^5S_2)| < |V(Coulomb)| \text{ for } r > r_0$ K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94 (2016), 031901
- 2.- Complete elastic with a similar attraction as ${}^5\mathrm{S}_2$

Results for p- Ω^{-}

Results for p- Ω^{-}

"Coulomb only" scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction

Precision of ALICE data exceeds the theoretical predictions

$$r_{core}$$
 = 0.73 ± 0.05 fm (+ resonances)

Comparison with the model favoured by STAR data:

> V_{III}: Ad-hoc fit to previous HAL-QCD calculations with non-physical quark masses with p Ω dibaryon E_b = 27 MeV

ALI-PREL-325870

Sensitivity of ALICE and STAR data

- Expected correlation function from heavy quark Lattice QCD potentials
- Smaller radius source offers the ideal conditions to test the models
- Better purity of ALICE data increases the sensitivity of the test

Sensitivity to the source size

 a_0 (p Ω)~ 3.4 fm, R(ALICE)~0.7 fm, R(STAR)~3 fm

Correlation function (${}^{5}S_{2}$) with distance cutoff

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5 \text{ fm}$
- For VI potential (no bound state) $C(k^*)$ always increases with decreasing $r_{\rm cutoff}$

Fixing the source

Effects of momentum resolution and feed-down contributions are applied to the fit function.

The effects of short-lived resonances are modeled by assuming a "core" source, from which resonances and primordial particles are emitted.

 $r_{
m core} = 0.995 \pm 0.006 ({
m stat.})^{+0.024}_{-0.022} ({
m syst.}) \ {
m fm}$

The source function

ALTCE

Effect of short-lived resonances

- Effects of strong resonances on the correlation function
 - Introduction of an exponential tail→ non-gaussian contribution
 - Resonances with cτ ~ r₀~ 1 fm

N* (
$$\Gamma$$
 ~ 150 - 200 MeV)
Δ (Γ ~ 150 MeV)...

- The modification is different for the distinct particle species
- The amount of resonances determined within a Statistical
 Hadronization Model in the canonical approach (Priv. Comm. With Prof. F. Becattini, see for details <u>J.Phys. G38 (2011) 025002</u>)
- The momentum of the resonance computed based on the assumption of a 2-body decay into a final momentum of k*=0

$$s=eta\gamma au_{
m res} = rac{p_{
m res}}{M_{
m res}} au_{
m res}$$

$$E(r, M_{
m res}, au_{
m res}, p_{
m res}) = rac{1}{s} \exp(-rac{r}{s})$$

VS.

The source function

Effect of short-lived resonances

- For Ξ^- and Ω^- no contributions!
- Average mass and average cτ determined by the weighted average values of all resonances

Particle	$M_{\rm res}$ [MeV]	$ au_{ m res}$ [fm]
p	1361.52	1.65
Λ	1462.93	4.69
Σ^0	1581.73	4.28

Gaussian core + resonances

The source (based on <mT>)

Radius for pure Gaussian or Gaussian core + Res. taken from p-p <mT> scaling with the specific value of average m_{τ} mass for each pair (see slides 11-12)

Effect on the source when smearing the resonances

